USING DISTRIBUTED SIMULATION FOR
DISTRIBUTED APPLICATION DEVELOPMENT

M. Mihlhauser
Digital Equipment Corporation, CEC Karlsruhe *
D-7500 Karlsruhe, W. Germany
Phone (+49)(721)661961

Abstract

The software engineering environment DESIGN integrates several approaches for the development of dis-
tributed applications. The distributed programming language DC provides for language support. A workstation
based human interface integrates programiming tools such as a language sensitive editor, a distributed debugger,
data evaluation tools, etc. This paper concentrates on a further approach of DESIGN: performance evaluation
and prototyping on the basis of distributed stimulation. The use of distributed simulation allowed to make effec-
tive use of the parallelism provided by a distributed system, not only after the accomplishment of a distributed
program, but from the very beginning of the development. A central goal of the DESIGN approach was com-
puler assisted modeling, i.e. automatic generation of the simulation model out of the program text of a network
application under development; this feature substantially simplifies performance evaluation and optimization
in early development phases. The distributed simulation approach, the computer assisted modeling technique,
and the modeling system for distributed applications are the main topics of the paper.

Keywords: distributed applications, distributed simulation, automatic modeling, software engineering envi-
ronment.

1 Introduction

The development of distributed applications requires engineering techniques including methods and tools for
performance evaluation. As existing techniques showed very limited applicability, a new approach called DESIGN
has been developed. DESIGN is a distributed environment for development and performance evaluation of
distributed applications.

One central part of DESIGN is the language DC. This language extends the well-known programming language
*C? [Ker78] by special constructs for formulating and developing distributed applications and their administration.

The second basic feature of DESIGN is the integration of programming support tools under a workstation
based human interface.

This paper concentrates on another strong point of DESIGN: performance evaluation in early phases of
development as an integral part of the programming process.

Performance optimization by simulative modeling has the following advantages:

e it can be applied in early development phases,

¢ the potential complexity of the models is not constrained by the underlying theory,

*On leave from University of Katlsruhe, Inst. for Telematics, (+49)(721)608-3391

Annual Simulation Symposium

189

190 MUHLHAUSER

¢ the application of simulation does not require deep theoretical knowledge.

Up to now, the two major disadvantages of simulative modeling were the high efforts necessary a) to construct
models and b) to carry out ezperiments.

In order to improve the ezperiment run lime behaviour, distributed simulation methods were chosen. The
net cpu time consumption of distributed simulation systems is typically higher than that of sequential simulation
systems. However, the benefits of using distributed simulation as a modeling basis are manyfoid:

e Distributed programming may be envisioned to occur typically in a network of processors of different power.
On one hand, the average network node will not have a very heavy cpu load. On the other hand, the total
cpu requirements for a simulation run is typically very high (years of experiences with sequential simulation
[WoM83] showed that this is especially true for the simulation of distributed systems). Distributing a
simulation experiment is an excellent means for equalizing the load among the nodes of a network in which
the application development (and simulation of the applications) takes place.

e The possible parallelism can speed up execution times; yet, the existing methods for distributed simulation
did not lead to a satislying degree of parallelism and had to be changed and adopted for our purposes (cf.
chapter 2).

e Major performance degradations of simulation experiments come from the massive paging and swapping
imposed by large simulation models. In this field distributed simulation can also help, because the parts of
a distributed simulation model running on one node are much smaller than with sequential simulation.

o Especially for simulating distributed applications, the clearcut interfaces required for distributed simulation
modules turned out to largely improve the modularity and readability of models. In fact, the compuler
assisted modeling concept (see below) was much easier to implement given the structuring rules of distributed
simulation modules.

An overview about the kernel system for distributed simulation will be given in chapter 2, concentrating on

the changes and adoptions to existing methods.

In order to reduce the modeling expense, it was seen as one of the main objectives in developing DC and
DESIGN to enable computer assisted modeling. Therefore, DC contains features that make it possible to use the
program text of a distributed application under development as a model, without the need for separate modeling.
In particular, sceletal distributed applications (prototypes), as they exist in early stages of development, can be
used for simulation experiments. Provided the programmer conforms to a special programming rule (‘explicit
naming of undeveloped code’, see chapter 3), the DC precompiler can automatically generate a simulation model
out of the program text of the prototype. The basic features of DC as well as the technique of computer assisted
modeling will be described in chapter 3.

Then, the modeling of the environment of a distributed application (e.g., resources, their management, users)
will be presented in chapter 4.

As the human interface and software engineering environment included in the DESIGN system are not of
central interest in the context of this paper, they will be described only briefly in Chapter 5.

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 9

2 Kernel system for distributed simulation
2.1 Basic features

We decided in favour of discrete event simulation since previous studies showed this simulation method to be
efficiently applicable to the simulation of distributed systems [WoM83].

The runtimes of simulation experiments tend to be rather long for complex models. One of the known
approaches to reduce these runtimes is that of distributed simulation where the components of the simulation
program are disseminated over a distributed system. In our approach both the simulation program and the
simulative runtime environment are distributed. A simulation program consists of a set of so-called simulation
modules, the necessary simulative runtime environment is formed by a set of simulation controllers.

Using discrete event simulation, the dynamics of an experiment is driven by so-called events generated and
processed by the simulation modules. Every event is characterized by

» the simulation module at which it has to occur and to be processed and

e by the simulation time at which it has to occur, called event lime.

In sequential simulation it is the task of the simulative runtime environment to synchronize the simulation modules
and events, 1.e. o control the order of events and to activate the simulation modules according to the event times
of the events. Prior to the activation of a simulation module, a system wide simulation time is set to the event
time.

In distributed simulation, events are ireated as messages being sent from the generating simulation module
to the simulation module where the event has to occur. The distribution of events and the intention to have
several simulation modules work in parallel render the task of synchronization much more diflicult. There are
several classes of synchronization methods, cf. [Pea80,Jef83). For our purposes, the class of loose synchonization
proved to be adequate. Loose synchronization methods allow every node to keep its own simulation time and
give a lower bound until which the simulation time of a node can be increased. For this lower bound it must be
guaranteed that no more events may arrive with an event time lower than the lower bound. Methods for loose
synchronization are discussed, e.g., in [Pea80,Bry79,ChM81,Jef83]. They are based on the requirement that every
simulation module generates events in increasing order of event time. Common to all methods are the ideas of
minimum service times and of link time messages.

The minimum service time of a simulation module denotes the lower bound for the difference between

¢ the simulation time at which an event is processed and

e the event times of new events generated in the course of this event processing.

Minimumn service times may be different for different simulation modules.

Every simulation module is connected via unidirectional links to every other simulation module for which it
may generate events; the links being unidirectional, a simulation module may distinguish between its input links
and its outpul links. For an input link, the link {ime denotes a lower bound for the event time of the next event
to be received on that input link. Whenever an event arrives on an input link, the link tifne is increased to the
event time of that event. In addition, a link may carry so-called link time messages which have the only meaning
to increase the link time for that link they are sent on.

The minimum of the link times of all input links is called minimum link time. This minimum link time gives

the upper bound for the simulation time until which a simulation module may proceed without the risc to receive

Annual Simulation Symposium

192 MUHLHAUSER

further events with smaller event times.

In the above mentioned publications about loose synchronization methods it is shown how deadlocks can be
avoided using link time messages, how to compute and when to send link time messages, and how to speed up
simulation experiments by time acceleration algorithms. Time acceleration algorithms are superimposed on the

normal synchronization.

2.2 Synchronization algorithms

The kernel system for distributed simulation used in DESIGN is based on the loose synchronization methods
presented above, but with two basic extensions. One of these extensions is called central synchronization. For
simulation experiments in DESIGN, the number of simulation modules is expected to be essentially larger than
the number of nodes in the underlying distributed system. To support a high degree of parallelism and to keep
the synchronization overhead as low as possible, it was decided
¢ to admit more than one simulation module per node,
¢ to keep different simulation times per module,
e to separate the synchronization and administration of simulation modules from the simulation modules
themselves,
e to merge all synchronization and administration parts of one node into a simulation controller,
¢ to introduce bidirectional channels as the logical view of all links running between simulation modules of
two nodes in either direction; a link from module A on node N4 to module B on node Np is modeled as a
link from module A to the channel between N, and Ny plus a link from the other end of the channel to B,
Link times and link time messages are used as described, but now referring to a channel (i.e., a bundle of links)
instead of to a single link. A channel is represented in each of the two respective simulation controllers by a data
structure reflecting the corresponding end of the channel. Analogously, the link time for either direction of the
channel is represented by a minimal send time on one end of the channel and by a minimal receive time on the

other end of the channel. Link time messages and events will be both referred to as messages.

2.2.1 Main loop of the simulation controller

The main part of the program for a simulation controller is a loop consisting of three functional blocks:

¢ Receive processing: in this block, incoming messages, i.e. events or link time messages, are treated.

¢ Local and send processing: every simulation module is inspected here. The so-called mazimum advance for
the simulation module is computed (see below) and events with an event time lower or equal to mazimum
advance are processed. The simulation time of the simulation module is then set equal to mazimum advance.
A value called nezxt event time for the simulation module kept in the simulation controller is set to the event
time of the earliest event left in the event queue of the simulation module or to infinite if the queue is empty.

o Channel processing: in this block every channel is inspected. A value, also called mazimum advance, is
computed (see below). If the minimal send time of the inspected channel is lower than the mazimum advance
computed for the channel, a link time message with value mazimum advance is sent and the minimal send

time of the channel is set to that value.

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT g3
2.2.2 Computation of maximum advance

In the following, both simulation modules and channels will be referred to as components for brevity. The
computation of mazimum advance for both types of components is based on the same algorithm. Let a simulation
controller be given together with n local components, e.g., s simulation modules Cy,...,C, und ¢ channels
Cotty- -+ yCotey n = § + ¢. Then the computation of mazimum advance is based on

¢ the minimal service time matrix B of dimension n x n,

¢ the shortest path matrix W of ditnension n X n, and

o the next event vector £ of dimension n.
The meaning of the minimal service time as introduced in, e.g., [Pea80], was changed for increased efficiency:
the minimal service time is no more only one common value per simulation module but is bound to the output
links of a simulation module. For each link starting at a local simulation module C; and ending at a local or
remote simulation module S, the minimal service time ms(C;, S) represents the minimal difference between the
simulation time at which an event is processed at C; and the event times of events generated in the course of
this event processing for S. The value ms(C;, S) has to be initialized at the creation time of a link; for links
originating and ending at the same simulation module, this value is not needed. For channels, all minimal service
times are assumed as zero.

Two further notions shall be introduced:

 the relation 14, indicating that there exists a direct link between two modules C; and C; (written C; M C}),

e the Set R;‘Ij of remote simulation modules to which there exists a link from C; which is part of channel C;

(withi < s and j > s).

On these premises, the minimal service time matrix B is computed as follows:

ms(C;, C;) tfi#j ANi,j<s A CiNC
B min,en._-lj (ms(Ciyr)) ift<sAj>s NRy;#0
Y7o ifi>s
o) otherwise

The shortest path matrix W expresses the minimal differences W; ; between the simulation time at which an
event is processed at C; and the event times of events processed at C; originating either directly or indirectly from
the event processing at C;. W is computed directly from B via a shortest path algorithm. W, ; is the minimal sum
of the minimal service times over a path from C; to C; with z intermediate components C;,,Cy,,...C;,,z > 0,
where intermediate components have to be simulation modules. W;; is the minimal value of

Bigy + By, +...+ By, ;
for all paths considered.

The elementis of the next event vector £ are determined as follow::

event time of the first event o

. ifi<s

& = { in the event queue of C;
minimal receive time of C; ifi>s.

Given £ and W, the mazimum advance for a component C; is obtained as

n%‘in(&, + Wk,;)

Fig. 1 gives an example for the computation of mazimum advance. The simulation modules 1, 2, and 3 are

shown together with their minimal service times (value in upper half, assumed as identical for all links to simplify

Annual Simulation Symposium

194 MUHLHAUSER

matters) and their next event time (value in lower half). Channels [and IT are labeled with their minimal receive

times.

shortest delay matrix:

123 1o next event vector:
@ 11 20 47 20 123 1.0
9 ® 9 36 9 [39 31 22 21 52]

36 27 o 27 27
3% 27 0 o 27
I 0 0 27 »

—t W N -

maximum advance
for simulation module Z:

48

Fig. 1: computation of mazimum advance

2.2.3 Time acceleration algorithm

With link time based synchronization, the advancement of simulation times (in our case via mazimum aedvance)
essentially depends on the minimal service times. This may cause significant performance degradations and imply
large numbers of link time messages in phases where the simulation time difference bet ween two consecutive events
is typically large compared to the minimnum service times.

A time acceleration algorithm is superimposed on the link time based synchronization and executed periodi-
cally. It computes the global, i.e. network wide next event time in a test phase via test messages. It then advances
the next event times of all simulation modules to at least this value in a set phase via set messages.

The time acceleration algorithm developed for DESIGN gives better performance than other proposals [Bry79],
because the number of messages per cycle is in the order of m instead of n? (where m is the number of simulation
controllers and n the - possibly much larger- number of simulation modules). A detailed description of the time

acceleration algorithm can be found in [MiiD86).

3 DC and computer assisted modeling
3.1 Requirements

Concerning the potential complexity of distributed applications, DC has to provide a software archilecture covering
top down design of distributed applications, modularization, explicit naming and handling of objects common
to distributed programs (communication paths, messages, processes etc.), and dynaiic changes in the number
and topology of these objects at runtime. In addition, a concept for communication between the modules of
a distributed application is of great importance. As DESIGN is thought to support performance evaluation,
software engineering, and distributed programming in an integrated manner, a modeling concept as part of DC is
necessary. This modeling concept has to provide hooks for the integration of DC into the development tools of
DESIGN.

In the following, every incarnation of a distributed application in a concrete distributed system shall be called
an erperiment. A distributed application in DC is composed of function entilies. In an experiment, function

entities represent separate sequential processes from the point of view of the operating systems of the nodes.

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT |95

Analogously, a distributed application program is divided into a set of function entity programs which can be

conceived as types of function entities.

3.2 Software Architecture
3.2.1 Hierarchical inodularity

DC decomposes each distributed application into a set of logical subsystems, represented at their interface by a
function entity. Such an “administrative” function entity controls and manages on one hand the interface to the
outside world and on the other hand further subsystems contained in it.

The interface of a function entity consists mainly of a set of interface ports each of which has a number of
valid incoming and/or outgoing message types associated with it.

If a function entity controls and manages subsystems, it may decide upon their creation, deletion (using
operations CREATE, TERMINATE and EXIT) and interconnection. For interconnecting its subsystems, a
function entity decides on the connection of the interface ports of the subsystems

e among each other using the operation CONNECT,

e to its own interface ports and thereby to the outside world using the operation MAP,

o to its so-called in;ler ports, also using the operation CONNECT.

There exist reverse operations and others not mentioned here. Inner ports are invisible at the interface to the
outside world, meant only for message exchange between the function entity and the administered subsystems.

Fig. 2 shows the above operations in an example to illustrate the structuring concept for distributed ap-
plications. Function entities are drawn in trapezoidal shape, dashed lines surround subsystems, and solid line

rectangles stand for ports.

(
|
!
L N\ /map !
I connect |
\ connect s |
| .

| Q3 :
| i
! |
{ |

Fig. 2: Structuring of a distributed application

3.2.2 Dynamics at runtime

The DC specific list concept provides for an indefinite, unrestricted number of objects and object references, e.g.,

function entities, network nodes, and communication ports.

3.2.3 Naming rules

DC requires the explicit naming and declaration of all communication ports, message types,‘ and subsystems

administered. This aliows, e.g., compile-time and runtime checks and the generation of graphical displays of

Annual Simulation Symposium

196 MUHLHAUSER

the distributed application structure. Moreover, all possible asynchronous events, called ezceptions, have to be
named in a specific program section, together with their handling. Structuring rules also apply to the program
text for a function entity.

Commaunication: For a high degree of flexibility, a relativly siinple basic communication concept was intro-
duced. Communication is based essentially on the two operations TRANSMIT and GET, for message transmission
and receipt. The basic operands are an output or input port and a message or message pointer.

GET enables input message selection according to reception port or message type. Arbitrary combinations of
ports, port lists, and message types may be enumerated in a GET statement: either one specific port, or a set of
ports, or every port may be specified valid, respectively; the same applies to message types.

Selective GET statements may be followed by a SWITCH statements, rendering a functionality comparable to
the so-called ‘guarded commands’ {Dij75]. GET is implemented synchronously, i.e. if no corresponding message
is stored in the input ports of the function entity, the function entity waits until a corresponding message arrives.
To avoid undesired waiting phases, a TEST function is available, analogous in syntax to the GET operation. The
boolean function TEST returns true if a corresponding message is stored in the input ports of the function entity.

To enhance the synchronization capabilities, TRANSMIT offers the option to delay the transmission of mes-
sages. Thus, e.g., a time-out mechanisin can be implemented by a delayed TRANSMIT to the transmitting

function entity itself. Delayed transmission of a message can be withdrawn using the operation CANCEL.

3.3 Computer assisted modeling

With the computer assisted modeling technique of the system DESIGN, the DC program text of the distributed
application under development is used as it is, translated by the DC precompiler into special simulation-oriented C
code. The DESIGN system combines the resulting simulation-oriented function entities with a special simulative
runtime environment described in chapter 4, both running on top of the kernel system for simulative modeling
described in chapter 2. The modeling system comprises models for the central resources (cpu and main memory),
for disk i/o subsystems, for terminal i/o subsystems, and for the communication subsystem. In addition, the
simulative runtime environment contains parts which are almost identical to those of the real-system runtime
environment, like certain monitoring facilities, the function entity administration system, etc.

The above means that the differences between real experiments and simulative experiments lie in the different
runtime environments and in the translation by the precompiler into either the real system or a simulative model.
The DC program text for both experiment types does not differ at all. This transparence of DC source code was
achieved by introducing four DC features, namely virfual function eniities, the common message ezchange basis,

compuling phases and interaction points, and the ezxplicit naming of undeveloped code.

3.3.1 Virtual function entities

In DC, terminal i/o and disk i/o are programmed in the same manner as the communication between function
entities: e.g., a function entity intending to do disk i/o does this by communication with a so-called virtual
function entity for disk i/o. The opening of a file corresponds to the connection between a port of the function
entity to a port of the virtual function entity for disk i/o where the port name reflects the file npme. Putting a
record onto a file corresponds to TRANSMITting a message to the virtual function entity at the corresponding

port (there are predefined message types corresponding to file records). A record is read from a file by issuing a

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 197

GET on the corresponding port; a file is closed by disconnecting the ports.

Terminal i/o is analogously performed by communicating to a virtual function entity for terminal i/o.

The virtual function entity for command input enables a user to transmit simple commands to a distributed
application using the standard system command level of the operating system he is using.

In addition, further system-specific virtual funciion entities may be developed on request, providing interfaces
to, e.g., special communication services, databases, application, process control systems, etc., which are to be
accessed by or incorporated into a distributed application.

Relation to computer assisted modeling:

Translating a distributed application program for real-system experiments, the precompiler translates communi-
cation with virtual function entities directly into disk i/o, terminal i/o, etc., i.e. in real-system experiments the
virtual function entities do not really exist but provide a consistent view of peripherals or services to be accessed
by a distributed application.

In the simulative runtime environment, the virtual function entities are represented by parts of the modeling
system, i.e. the virtual function entities stand for models of the peripherals or services to be accessed. The com-
mon treatment for every possible communication partner, may it be another part of the distributed application,
a peripheral, or a service, makes it possible for the precompiler to easily switch between real usage of peripher-
als/services and modeling of such (in fact, a user may request that, e.g., both the modeling of disk i/o and real

disk i/o take place in a simulation experiment).

3.3.2 Common message exchange basis

The common message exchange basis means that all interactions of a function entity with its outside world are
effected by the four communication operations TRANSMIT, GET, TEST and CANCEL. For message exchange
between funclion entities this is trivially true; for disk and terminal i/o, command input, and specific services,
the common message exchange basis is introduced via the virtual function entities. As for the administrative
operations of a function entity, like MAP, SERVE, CREATE, and so on, these operations are translated into
messages which are TRANSMITed to the runtime environment of a distributed application, more precisely called
local administiration entity (this term describes that part of the runtime environment which resides on the same
network node as the function entity).

Relation to compuler assisied modeling:

Regarding the four basic operations one finds that, for modeling purposes, TEST and CANCEL can be emulated
by specific TERMINATE and GET operations exchanged with the model of the local operating system (see
below). Therefore the computer-assisted modeling technique has to distinguish in principle only two basic types of
interaction, whereas all other types of interaction (i/o through virtual function entities, administrative operations,

TEST, CANCEL) base on these two operations.

3.3.3 Computing phases and interaction points

The poinis in the program text where interactions (administrative operations, message exchange with other
function enlities, or communication with virtual function entities) are performed are called interaction points as
opposed to computing phases. Computing phases are program sections which do not contain any of these two

operations. The effects of any actions undertaken in a computing phase remain internal to the function entity

Annual Simulation Symposium

198 MUHLHAUSER

until the next interaction point is reached; the only external eflects of computing phases lie in their consumption
of the central resources cpu and main memory.
Relation to computer assisted modeling:
All points in the program text of a function entity where interactions are performed may easily be identified, as
they are well-defined; administrative operations and message exchange operations - dealing with either real or
virtual function entities - are identified by keywords of the language DC and can be processed by the precompiler.
Moreover, after translation of administrative operations, TEST, and CANCEL, the computer assisted modeling
technique has to deal with no more than two types of interaction points.

To recapitulate, a function entity can be viewed as an alternating sequence of computing phascs and interaction
points, a computing phase has no side effects but consumption of central resources, and an interaction point may

be either a TRANSMIT or a GET.

3.3.4 Explicit naming of undeveloped code

This term denotes the programming rule a programmer has to conform to, so that computer assisted modeling
can be applied. When, in early phases of the distributed application development, the programmer outlines
function entities by programming only essential parts of the function entities, i.e. those parts which form the
sceletal structure of what the function entity is thought for, the parts of computing phases left out have to be
explicitly denoted by statements of the form

to_develop <ident> ‘| ¥’ <description> ‘x|’

<unit> <magnitude> substitution <statement>;
where <ident> uniquely identifies the section to be developed, <description> gives a verbal description of what
the section to be developed is supposed to do, <unit> and <magnitude> represent the programuner’s estimate of
the amount of cpu necessary, stated as either the number of statements, or lines of code, or milliseconds of cpu.
The amount of main memory occupied by the function entity is stated as one of the simulation parameters. The
SUBSTITUTION part indicates interim code necessary to ensure the semantical and pragmatical correciness of
the function entity code in the absence of the code to be developed.

Analogous to computing phases to be developed there may be message parts to be developed - i.e. in early
development phases duminy messages or message parts may be used. If such dummy messages are shorter in
length than expected for the final messages, this has to be stated in the program text, too.

In order to assure a consistent view of the abstraction level for all function entilies at a certain development
phase, a central message definition is used where the types of all messages to be transmitted between function
entities have to be defined.

The relation of the explicit naming of undeveloped code to computer assisted modeling will become evident

in the next two sections.

3.3.5 Modeling technique - simplified:

In the next two sections, we will show how the precompiler modifies the source code of prototype function entities
in order to construct a model of the future distributed application. We will concentrate on the modeling technique

as pertaining to the consupmtion of central resources, i.e., main memory and (mainly) cpu. As for the modeling of

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT |99

disk i/o, terminal i/o, etc., the precompiler mainly has to modify the messages exchanged with the corresponding
virtual function entities; for the sake of shortness, these paris of the modeling technique shall be left out.

It was shown how the concept of virtual function entities and the common message exchange basis enable the
view of a function entity as consisting of a sequence of computing phases and interaction points. On a simplifying
level of abstraction, the modeling technique may be viewed as follows:

COMPUTING PHASE:

linside a computing phase, the DC preprocessor adds statement to the program code which sum up the
amounts of central resource (cpu and main memory) required by the computing phase. These amounts are
determined by the precompiler according to the type of statement and operands, using predefined values specific
for the type of computer to be modeled; these predefined values are generated by a dedicated calibration tool.
The additional statements inserted by the precompiler sum up these amounts of central resource in local variables
al runtime, so that, e.g., an arbitrary number of loops can be considered. For undeveloped code the programmer’s
estimates are used as given in the to_develop-statement, multiplied by a machine-specific factor calculated by the
calibration tool mentioned.

INTERACTION POINT:

At the end of a computing phase, before an interaction point, statements are added for communication with a
model of the local computer and its operation system, called os-kernel-model (described in the following chapter).
First, a message called ‘resource request’ is transmitted containing the amount of central resources requested in the
passed computing phase. The os-kernel-model then simulates the consumption of these central resources. Then, a
‘resource acknowledgement’ is sent from the os-kernel-model to the function entity. Finally, the interaction takes

place as specified in the interaction point.

os~-kernel model

function entity central resource
/ request
(resource
usage)
simulation

1~ of resource
comey usage
ing phase

-
| ——fresourceack

interaction point interaction

Fig. 3: Message flow for the simplified modeling technique.

3.3.6 Modeling technique - optimized:

The technique described can be optimized further. It is obvious that only for interactions of type GET the flow of
actions of a function entity may depend on the progress of other function entities (i.e., of the time and sequence
of the arrival of messages), whereas interactions of type TRANSMIT do not further influence the flow of actions
of the transmitting function entity. Therefore, a function entity might synchronize with the os-kernel model not
before every interaction point.

The progress of the function entities according to simulation time, however, is by far mutually dependant

Annual Simulation Symposium

200 MUHLHAUSER

through the competition for central resources. Therefore, a function entity willing to transmit a inessage does not
know the simulation time associated with the TRANSMIT operation unless the os-kernel-model has acknowledged
the resource pertaining to the preceding computing phase. The modeling technique used in the DESIGN system
is therefore (roughly) as follows:

¢ the precompiler adds statements to the function entity code such that a function entity passes computing
phases as well as TRANSMIT-type interaction points without interferring with the os-kernel model. While
doing so, the function entity builds up a so-called sequence message consisting of ‘resource requests’ (for
every computing phase, see above) and of “TRANSMIT descriptions’ describing TRANSMIT-type interac-
tions. The real messages pertaining to a TRANSMIT-type interaction are immediately transmitted to their
destination, but are treated ‘nonvalid’ by the destinated function entity, see below. Reaching an interaction
point of type GET, a ‘GET description’ is entered into the sequence. The furhter flow of actions depends
on whether or not a valid message corresponding to the GET has already arrived. If so, the GET-type
interaction is satisfied and the next computing phase is handled as described above. If not, the function
entity transmits the sequence to the os-kernel model and waits for a resource acknowledgement as described
for the simplicied modeling technique.

» The os-kernel model simulates the consumption of central resources according to the different sequences
received by the different function entities (see next chapter). Reaching a ‘TRANSMIT description’, the
os-kernel model knows the simulation time pertaining to the corresponding TRANSMIT. At that time, the
os-kernel model sends a TRANSMIT acknowledgement to the destinated function entity of the TRANSMIT

which turns the message (that was already received from the originating function entity) from ‘nonvalid’ to

‘valid’.
function entity function entity
(resource
comput- usage)
ing phase
interaction
pt. (transmir)
G y
! message - Y,
| /
| /
| /
| /
| /
*© /
T /
sequence] ™~ / [(TRANSMIT ack
- /
simul- /
ation /
/
of re- /
source /
usage [
/
'/

os-kernel model
Fig. 4: Message flow for the optimized modeling technique.
4 Modeling system
4.1 Components of the simulative runtime environment

The modules of a simulation experiment are distributed among the network nodes on which the experiment

shall actually run; these (physical) network nodes are called the underlying distributed system. The underlying

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 3

distributed system is to be distinguished from the modeled distributed system which consists of modeled nodes
and of modeled communication subsystems. The kernel system for distributed simulation is distributed over the
underlying distributed system and makes the latter transparent to the simulation model.

A modeled node consists of the following parts:

o the funciion entity models destined for that node,

the local administration entity,

¢ the os-kernel model,

file modules (modeling *virtual function entities’ for disk i/o, see above),

¢ the system workload (inodeling the behaviour of interactive users and their processes),

the application workload (modeling users of the distributed application), and
¢ workload generators (one fore each type of workload).

The modeled communication subsystems build up the model for the network interconnecting the modeled nodes.

! _function

/_f/ entities

.
H
H
]

modeled node N
:
:
H

workload

‘ /l<4/:/'/ ::m;ms(ratlon

generator S e
HE H

peeeseennanannncen, . HE H
. 1} 1] : :
: os kernel P commu-{

H ! nication|

file module ‘ HE subsy-— :
.- ' stem H

¥ :

eematacad

kernel system for distributed simulation

underlying distributed system

Fig. 5: Distributed application model

Fig. 5 shows an example of the model of a distributed application. The figure does not show ‘logical’ commu-
nication links between the model parts, but illustrates the modularization from the point of view of the kernel
system for distributed simulation. All the model components shown in figure 5 exist as predefined building blocks,
parametrized and configured by an experiment definition tool and an experiment control tool which are part of

the DESIGN software production environment (see next section). A more detailed description of the modeling

concept can be found in {MiD86).

Annual Simulation Symposium

202 MUHLHAUSER

4.2 Os-kernel

The structure of the central part of the os-kernel model is described using a pseudo code similar to DC. The
os-kernel manages all entities contained in a network node, where the function entities, the adininistration entity,
the virtual function entities, and the models of the system workload processes are denoted as entities. The
allocation of the central resources to all sorts of entities and the interactions between entities are controlled by
the os-kernel. The resource management is controlled using the above described sequence messages, the elements
of which consist of a cpu time request for a computing phase and of a description of the succeeding interaction.

Every entity is described by a struct which contains the actual sequence message, a boolean variable MATCH
indicating whether the GET which terminates the sequence message has been satisfied already by a matching
message, and a pointer to management data about the entity. The sequence message is stored as a DC list named
seq< >, where ‘€ > is the DC symbol for lists.

The entity descriptions of running entities are stored in two lists, computable< > and waiting<>. The list
of computable entities is ordered according to the cpu time request of the first element in their sequence message
in increasing order. Therefore the first entity, described by computable< 6 3>, is the one with the minimal cpu
time request to be satisfied before the next interaction point. The main loop of the os-kernel roughly executes as

shown in figure 6 (cf. explanations below).

loop begin
service_time = compute_svt(computable< 0> .seq< 0>>.cpu_time,
computable.length);

start_time = time;

delay (service.time);

if pre_empted
then cpu_time_passed = get_cpu_time passed (time, start_time);
else cpu_time_passed = computable< 0 > .seq< 0>>.cpu_time;

for (i = 0; i++; i < computable.length) begin
computable< i 3».seq« 0 > .cpu.time =- cpu_time_passed;
if computable< > .seq« 0> .cpu_time == 0 then
switch (computable< i ».seqg 0> .type) begin
case transmit:
transmit (computable< i > .seq< 0 ».interaction);
remove first_element (computable< i > .seq);
reschedule (computableg i>);
case get:
if computable< ¢ > .match then begin
computable< i > .match = false;
remove_sequence (computable& i >);
receive new_sequence (computable< i >);
reschedule (computable< i3>);
end else
put_into waiting list (computable<k i >)};
end;
end;
if pre_empted then transmit (preempting message);
end;

Fig. 6: Pseudo code for main loop of os-kernel

The os-kernel first computes the expected time necessary to satisfy the cpu time requested until the next in-
teraction point. This time, called service_time, is computed out of the number of computable entities, com-

putable.length, the cpu time requested, computable< 0 >>.seq< 0 >>.cpu_time, and of some system parameters

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 9g3

(size of main memory etc.). Note that service_time is a simulation time.

The os-kernel is then suspended for a time period of length service_time. The os-kernel is reactivated, either
after service_time has passed or when the os-kernel is pre-empted by a ‘TRANSMIT description’ arriving from a
virtual {function entity (for the notion “TRANSMIT description’ see 3.3.5). In either case, the cpu time requests
of all entities are decreased by the cpu time corresponding to the time passed.

If no pre-emption occurred, at least the first entity in the computable list has (in simulation) reached its first
interaction point. In its sequence, this interaction may correspond to either a ‘TRANSMIT description’ or a
‘GET description’.

If the interaction point is a TRANSMIT, the corresponding ‘TRANSMIT acknowledge’ is transmitted. If
the TRANSMIT matches a GET terminating a sequence message of a computable entity, the variable match
of the receiving functing entity is set true. If the TRANSMIT matches a GET of an entity in the waiting list,
the corresponding entity will be activated by the ‘TRANSMIT acknowledge’ sent; in this case, a new sequence
message is awaited from this entity and the entity description is scheduled into the computable list according to
its first cpu time request, as above.

If the interaction point is a GET and the GET wag matched already, then the matching message has already
activated the corresponding entity and a new sequence message can be received. After the arrival of the sequence
message, the entity is rescheduled as above. If the GET has not yet been matched, the entity description is
transferred into the waiting list.

If a pre-emption occurred, a “TRANSMIT acknowledge’ is transmitted according to the “TRANSMIT descrip-

tion’ received from a virtual function entity.

4.3 Workload

Workloads are modeled by workload generators, one per node for the system workload and one per node for the
distribuled application workload. Every workload generator is configured by the user at experiment definition
time. The user may define an arbitrary set of arrival processes, each of which is characterized by a statistical
distribution, by the parameters of the distribution, and by the user-defined name of the so-called Ioad type.

In addition to the simple load types offered by DESIGN, the user may program its own load types in DC.

4.4 Further modules

For file modules and communication subsystems DESIGN offers standard models. To a certain extent, these
models can be adapted to the distributed system to be modeled by parameters like mean access time for disks,
protocol parameters and performance data for communication subsystems, etc. In addition the user may build
its own models and implement them as separate modules of type ‘file module’ or ‘communication subsystem’.
Sceletal DC programs are offered for such extra modeling so that, e.g., the interface definition is compatible to

that of standard models.

5 The System DESIGN

In this chapter a short overview is given about the embedding of DC and the simulative runtime environment
into the system DESIGN. The main parts of DESIGN are the user interface, tools, project data and runtime

environments.

Annual Simulation Symposium

204 MUHLHAUSER

Project date: As distributed applications may be large and complex, several programmers may be involved
in their development; a distributed application will normally be kept in a series of versions where, e.g., simple
versions may be used as simulation models for more detailed versions. Regarding these facts, DESIGN defines a
so-called working context which is characierized by

e the actual distributed application,

¢ the current version,

¢ the actual function entity,

¢ the runtime environment (real-system, simulative, or other),

¢ the experiment definition,

e the name of the programmer, and

¢ the actual node in the underlying distributed system.

These classification points form the basis for the structuring hierarchy for project data in DESIGN. The DESIGN
user interface centrally controls access to and usage of all project data; specific *rights lists’ control access rights
of different users.

Software lifecycle: DESIGN conceives a distributed application development as an iterative walk through the
four basic phases CONSTRUCT, COMPOSE, CONTROL, and CONCLUDE; in addition, there is a phase called
MANAGE which can be entered from any other phase, In each phase, the programmer may chose from a number
of actions.

Tools: The large set of tools offered to the user includes those pertaining to the runtime environments,
like experiment definition and experiment monitoring tools. Most tools are specific to a certain phase and
implemented as actions in these phases, e.g., a language specific editor in phase CONSTRUCT, graphical aids in
phase MANAGE, a playback tool and a distributed debugger in phase CONTROL, etc.

User interface: The DESIGN user interface is based on a workstation with a high resolution monitor, multi-
windowing and keyboard plus graphics input (e.g., mouse). The user interface guides through the phases of the
software lifecycle and provides a common access method for all tools, where the parallel usage of different tools
is possible by the multiwindowing feature. Commands are selected using icons, and where alphanumerical input
is requested, command boxes with preset values are available. Structuring rules apply to the monitor display,
including positioning rules for status and message texts, help displays, and icons. A typical screen layout of the

user interface is shown in Figure 7.

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT g5

——

N

Save' Rackup to Tape

DESIGN e

~ Select the type of the backup)
DESIGH 142.2 on CEC Cluster - ~ JU““‘SN
To log in preas any mouse button when the pointer is within this window. FE

Savesct Hame :

o) Comen)

DESIGN Software-lifecycle

MHode: KAMPUS Mod, :
HUA : DRIMLER RTE : REAL
Uer.: PBF Emp.:

MANAGE
((cuus:nucr COMPOSE %(CONTROL CONCLUDE)’)

B g
Prg.: MAX FE : BELT_T1vI
N Node: KAMPYUS Mod. ¢
HUA : DAIMLER RTE : REAL
interact LOCK Save Create Modify RY Yer.: PBF Exp.:

Last update: 17:50:09

< PRG PNWA || sBUSN @COP || 2HG || o YT

cre prgrmr. || create wwn | [cro version || copy verston | | cre naaaing || er R G|
R . _ _ DESIGN messages . '
Set Update Dolete

Welcome to the DESIGH development dialog system)

[DESIGH-1-NEWMAIL, You have 31 new Mail

Fig. 7: Screen layout of the DESIGN user interface

6 Conclusion

The paper shows how distributed simulation can be used for the development and performance evaluation of
distributed applications. A main result is that the integration of the real programming and of the simultive mod-
eling in one common software engineering environment can essentially facilitate the use of simulative performance
evaluation.

The simulation oriented features form only a part of DESIGN; the power of DESIGN lies in its integration
of distributed programing, software engineering, and performance evaluation. Almost all parts of the DESIGN
system according to the current concept are fully developed and operational. Experimental applications have
been developed using the system. Some work is still undertaken in order to fully integrate the modeling part of

design with the other parts.

Annual Simulation Symposium

206

MUHLHAUSER

References

[Bry79]

[ChM81]

[Dij75)

[Jel83)

[MaD86]

[Ker78]

[Pea80]

[WoMB83]

Bryant, R.E.:

Simulation on a Distributed System.

Proc. IEEE, CH1445-6/79, 1979

Chandy, K.M., Misra, J.:

Asynchronous Distributed Simulation via a Sequence of Parallel Computations.

CACM, Vol. 24, No. 11, 1981, pp. 198-206

Dijkstra, E.W.:

Guarded commands, nondeterminacy, and formal derivation of programs.

CACM, Vol. 18, No. 8, 1975, pp. 453-457

Jefferson, D.:

Virtual Time.

University Of Southern California, Los Angeles, CS Dept.; TR-83-213, May 1983

Mithlhiuser, M., Drobnik, O.:

Integrated Development And Performance Evaluation Of Network Applications Using Distributed Sim-
ulation.

in: Shoemaker, S. (Ed.): Computer Networks And Simulation I,

North Holland 1986, pp. 361-983

Kernighan, B.W., Ritchie, D.M.:

The C Programming Language.

Prentice-Hall 1878

Peacock, J.K.:

Distributed Simulation Using a Network of Processors.

Dept. of CS and CCNG, University of Walerloo, Ontario, Canada; CCNG T-Report T-87, January
1980

Wolfinger, B., Miihlhduser, M.:

Construction Of A Validated Simulator For Performance Prediction Of DECnet-based Computer Net-
works.

Performance Evaluation Review, 8/83, pp. 138-150

Annual Simulation Symposium

