
USING DISTRIBUTED SIMULATION FOR

DISTRIBUTED APPLICATION DEVELOPMENT

M. Miihlhiuser

Digital Equipment Corporation, CEC Karlsruhe *

D-7500 Karlsruhe, W. Germany

Phone (+49)(721)661961

Abstract

The software engineering environment DESIGN integrates several approaches for the development of clis-
tributed applications. The distributed programming language DC provides for language support. A workstation
based human interface integrates programming tools such as a language sensitive editor, a distributed debugger,
data evaluation tools, etc. This paper concentrates on a further approach of DESIGN: performance evaluation
and prototyping on the basis of distributed simulation. The use of distributed simulation allowed to make effec-
tive use of the parallelism provided by a distributed system, not only after the accomplishment of a distributed
program, but from the very beginning of the development. A central goal of the DESIGN approach was com-
paler assisted modeling, i.e. automatic generation of the simulation model out of the program text of a network
application under development; this feature substantially simplifies performance evaluation and optimization
in early development phases. The distributed simulation approach, the computer assisted modeling technique,
and the modeling system for distributed applications are the main topics of the paper.

Keywords: distributed applications, distributed simulation, automatic modeling, software engineering envi-
ronment .

1 Introduction

The development of distributed applications requires engineering techniques including methods and tools for

performance evaluation. As existing techniques showed very limited applicability, a new approach called DESIGN

has been developed. DESIGN is a distributed environment for development and performance evaluation of

distributed applications.

One central part of DESIGN is the language DC. This language extends the well-known programming language

‘C’ [Keri’8] by special constructs for formulating and developing distributed applications and their administration.

The second basic feature of DESIGN is the integration of programming support tools under a workstation

based human interface.

This paper concentrates on another strong point of DESIGN: performance evaluation in early phases of

development as an integral part of the programming process.

Performance optimization by simulative modeling has the following advantages:

l it can be applied in early development phases,

l the potential complexity of the models is not constrained by the underlying theory,

‘On leave front University of Karlsruhe, Inst. for Telematics, (+49)(721)608-3391

Annual Simulation Symposium

I90 MUHLHAUSER

l the application of simulation does not require deep theoretical knowledge.

Up to now, the two major disadvantages of simulative modeling were the high efforts necessary a) to con&uct

models and b) to carry out ezperimenti.

In order to improve the ezperiment run time behaviour, distributed simulation methods were chosen. The

net cpu time consumption of distributed simulation systems is typically higher than that of sequential simulation

systems. However, the benefits of using distributed simulation as a modeling basis are manyfold:

l Distributed progr amming may be envisioned to occur typically in a network of processors of different power.

On one hand, the average network node will not have a very heavy cpu load. On the other hand, the total

cpu requirements for a simulation run is typically very high (years of experiences with sequential simulation

[WoM83] showed that this is especially true for the simulation of distributed systems). Distributing a

simulation experiment is an excellent means for equalising the load among the nodes of a network in which

the application development (and simulation of the applications) takes place.

l The possible parallelism can speed up execution times; yet, the existing methods for distributed simulation

did not lead to a satisfying degree of parallelism and had to be changed and adopted for our purposes (cf.

chapter 2).

s Major performance degradations of simulation experiments come from the massive paging and swapping

imposed by large simulation models. In this lieId distributed simulation can also help, because the parts of

a distributed simulation model running on one node are much smaller than with sequential simulation.

l Especially for simulating &tributed applications, the clearcut interfaces required for distributed simulation

modules turned out to largely improve the modularity and readability of models. In fact, the computer

assisted modeling concept (see below) was much easier to implement given the structuring rules of distributed

simulation modules.

An overview about the kernel system for distributed simulation will be given in chapter 2, concentrating on

the changes and adoptions to existing methods.

In order to reduce the modeling e-erase, it was seen as one of the main objectives in developing DC and

DESIGN to enable computer assisted modeling. Therefore, DC contains features that make it possible to use the

program text of a distributed application under development as a model, without the need for separate modeling.

In particular, sceletal distributed applications (prototypes), as they exist in early stages of development, can be

used for simulation experiments. Provided the p rogrammer conforms to a special programmi ng rule (‘explicit

naming of undeveloped code’, see chapter 3), the DC precompiler can automatically generate a simulation model

out of the program text of the prototype. The basic features of DC as well as the technique of computer assisted

modeling will be described in chapter 3.

Then, the modeling of the environment of a distributed application (e.g., resources, their management, users)

will be presented in chapter 4.

As the human interface and software engineering environment included in the DESIGN system are not of

central interest in the context of this paper, they will be described only briefly in Chapter 5.

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 191

2 Kernel system for distributed simulation

2.i Basic features

We decided in favour of discrete event simulation since previous studies showed this simulation method to be

efficiently applicable to the simulation of distributed systems IWoM83].

The runtimes of simulation experiments tend to be rather long for complex models. One of the known

approaches to reduce these runtimes is that of distributed simulation where the components of the simulation

program are disseminated over a distributed system. In our approach both the simulation program and the

simulative runtime environment are distributed. A simulation program consists of a set of so-called simulation

modules, the necessary simulative runtime environment is formed by a set of simulation controllers.

Using discrete event simulation, the dynamics of an experiment is driven by so-called events generated and

processed by the simulation modules. Every event is characterized by

l the simulation module at which it has to occur and to be processed and

l by the simulation time at which it has to occur, called event time.

In sequential simulation it is the task of the simulative runtime environment to synchronize the simulation modules

and events, i.e. to control the order of events and to activate the simulation modules according to the event times

of the events. Prior to the activation of a simulation module, a system wide simulation time is set to the event

time.

In distributed simulation, events are treated as messages being sent from the generating simulation module

to the simulation module where the event has to occur. The distribution of events and the intention to have

several simulation modules work in parallel render the task of synchronization much more difficult. There are

several classes of synchronization methods, cf. [Pea80,Jef83]. F or our purposes, the class of loose synchonization

proved to be adequate. Loose synchronization methods allow every node to keep its own simulation time and

give a lower bound until which the simulation time of a node can be increased. For this lower bound it must be

guaranteed that no more events may arrive with an event time lower than the lower bound. Methods for loose

synchronization are discussed, e.g., in [Pea80,Bry79,ChM81,Jef83]. Tl ley are based on the requirement that every

simulation module generates events in increasing order of event time. Common to all methods are the ideas of

minimum service times and of link time messages.

The minimum service time of a simulation module denotes the lower bound for the difference between

l the simulation time at which an event is processed and

l the event times of new events generated in the course of this event processing.

Minilnum service times may be different for different simulation modules.

Every simulation module is connected via unidirectional links to every other simulation module for which it

may generate events; the links being unidirectional, a simulation module may distinguish between its input links

and its oufput links. For an input link, the link time denotes a lower bound for the event time of the next event

to be received on that input link. Whenever an event arrives on an input link, the link time is increased to the

event t,itne of that event. In addition, a link may carry so-called link time messages which have the only meaning

to increase the link titne for that link they are sent on.

The minimum of the link times of all input links is called minimum link time. ‘Illis millilnuln liuk time gives

the upper bound for the simulation time until which a simulation module may proceed without the rise to receive

Annual Simulation Symposium

192 MUHLHAUSER

further events with smaller event times.

In the above mentioned publications about loose synchronization methods it is shown how deadlocks can be

avoided using link time messages, how to compute and when to send link time messages, and how to speed up

simulation experiments by time acceleration algorithms. Time acceleration algorithms are superimposed on the

normal synchronization.

2.2 Synchronization algorithms

The kernel system for distributed simulation used in DESIGN is based on the loose synchronization methods

presented above, but with two basic extensions. One of these extensions is called central synchronization. For

simulation experiments in DESIGN, th e number of simulation modules is expected to be essentially larger than

the number of nodes in the underlying distributed system. To support a high degree of parallelism and to keep

the synchronization overhead as low as possible, it was decided

l to admit more than one simulation module per node,

l to keep different simulation times per module,

l to separate the synchronization and administration of simulation modules from the simulation modules

themselves,

z to merge all synchronization and administration parts of one node into a simulation controller,

s to introduce bidirectional channels as the logical view of all links running between simulation modules of

two nodes in either direction; a link from module A on node Na to module B on node Ns is modeled as a

link from module A to the channel between NA and NB plus a link from the other end of the chamlel to B.

Link times and link time messages are used as described, but now referring to a channel (i.e., a bundle of links)

instead of to a single link. A channel is represented in each of the two respective simulation controllers by a data

structure reflecting the corresponding end of the channel. Analogously, the link time for either direction of the

channel is represented by a minimal send time on one end of the channel and by a minimal receive time on the

other end of the channel. Link time messages and events will be both referred to as messages.

2.2.1 Main loop of the simulation controller

The main part of the program for a simulation controller is a loop consisting of three functional blocks:

l Receive processing: in this block, incoming messages, i.e. events or link time messages, are treated.

l Local and send processing: every simulation module is inspected here. The so-called m&mum advance for

the simulation module is computed (see below) and events with an event time lower or equal to m&mum

advance are processed. The simulation time of the simulation module is then set equal to mazimum advance.

A value called nezt event time for the simulation module kept in the simulation controller is set to the event

time of the earliest event left in the event queue of the simulation module or to infinite if the queue is empty.

l Channel processing: in this block every channel is inspected. A value, also called mazimum advance, is

computed (see below). If the minimal send time of the inspected channel is lower than the mazimum advance

computed for the channel, a link time message with value mazimum advance is sent and the minimal send

time of the channel is set to that value.

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 193

2.2.2 Computation of maximum advance

In the following, both simulation modules and channels will be referred to as components for brevity. The

computation of mazintum advance for both types of components is based on the same algorithm. Let a simulation

controller be given together with n local compmlents, e.g., s simulation modules Cl,. . . , C, und c channels

c st1,..., c S+C, n = s + c. Then the computation of mazimum advance is based on

l the minimal service time matrix I3 of dimension n x 7t,

l the shortest path matrix W of dimension n x n, and

4 the next event vector E of dimension n.

The meaning of the minimal service time as introduced in, e.g., [Pea80], was changed for increased efficiency:

the minimal service time is no more only one common value per simulation module but is bound to the output

links of a simulation module. For each link starting at a local simulation module C; and ending at a local or

remote simulation module S, the minimal service time ms(Ci, S) re p resents the minimal difference between the

simuIation time at which an event is processed at C; and the event times of events generated in the course of

this event processing for S. The value ms(Ci, S) has to be initialized at the creation time of a link; for links

originating and ending at the same simulation module, this value is not needed. For channels, all minimal service

titnes are assumed as zero.

Two further notions shall be introduced:

. the relation W, indicating that there exists a direct link between two modules Ci and Cj (written Ci w Cj),

l the Set Rl’lj of remote simulation modules to which there exists a link from Ci which is part of channel Cj

(with i 5 s and j > s).

On these premises, the minimal service time matrix B is computed as follows:

ms(G, Cj)

L

ifi#j A i,j<s A CjWCj

Bi,j =
tn&jy ,,, (7IZS(Ci,r)) if i 5 s A j > s A Riij # 0

0 ifi>s

otherwise

The shortest path matrix W expresses the minimal differences Wi,j between the simulation time at which an

event is processed at Ci and the event times of events processed at Cj originating either directly or indirectly from

the event processing at Ci. W is computed directly from I3 via a shortest path algorithm. Wi,j is the minimal sum

of the millimal service times over a path from Ci to Cj with z intermediate components C;, , Cj,, . . . CiZ , z 2 0,

where intermediate components have to be simulation modules. Wi,j is the minimal value of

Bi,il + &,,i, -t . - . -f- Biz,j

for all paths considered.

The elements of the next event vector & are determined as folIowe:

Ej =

i

event time of the first event

in the event queue of C;
ifi<s

minimal receive time of Ci z’f i > s.

Given E and W, the mazimum advance for a component Ci is obtained as

Fig. 1 gives an example for the computation of mazimum advance. The simulation modules 1, 2, and 3 are

shown together with their minimal service times (value in upper half, assumed as identical for all links to simplify

Annual Simulation Symposium

194 MUHLHAUSER

matters) and their next event time (value in lower half). Channels I and II are labeled with their minimal receive

times.

shortest delay matrix:

12 3 I II next event vector:

co 11 20 47 201 12 3 I II

9 03 9 36 9 1 ,-- 139 31 22 21 521

36 27 Q) 27 271 1

36 27 0 Q) 27
I I maximum advance

forsimuljiong0iu(Ei: 9 0 9 27 -1 1

“I

Fig. 1: computation of mazintum advance

2.2.3 Time acceleration algorithm

With link time based synchronization, the advancement of simulation times (in our case via m&mum advance)

essentially depends on the minimal service times. This may cause significant performance degradations and imply

large numbers of link time messages in phases where the simulation time difference between two consecutive events

is typically large compared to the minimum service times.

A time acceleration algorithm is superimposed on the link time based synchronization aud executed periodi-

cally. It computes the global, i.e. network wide next event time in a test phase via test messages. It then advances

the next event times of all simulation modules to at least this value in a set phase via set messages.

The time acceleration algorithm developed for DESIGN g ives better performance than other proposals [Bry79],

because the number of messages per cycle is in the order of m instead of n2 (where m is the number of simulation

controllers and n the - possibly much larger- number of simulation modules). A detailed description of the time

acceleration algorithm can be found in [MiiD86].

3 DC and computer assisted modeling

3.1 Requirements

Concerning the potential complexity of distributed applications, DC has to provide a software architecture covering

top down design of distributed applications, modularization, explicit naming and handling of objects common

to distributed programs (communication paths, messages, processes etc.), and dynamic cha.nges in the number

and topology of these objects at runtime. In addition, a concept for communication between the modules of

a distributed application is of great importance. As DESIGN is thought to support performance evaluation,

software engineering, and distributed programming in an integrated manner, a modeling concept as part of DC is

necessary. This modeling concept has to provide hooks for the integration of DC into the development tools of

DESIGN.

In the following, every incarnation of a distributed application in a concrete distributed system shall be called

an erperiment. A distributed application in DC is composed of function entities. In an experiment, function

entities represent separate sequential processes from the point of view of the operating systems of the nodes.

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 195

Analogously, a distributed application program is divided into a set of function entity programs which can be

conceived as types of function entities.

3.2 Software Architecture

3.2.1 Hierarchical rrrodularity

DC decomposes each distributed application into a set of logical sukyrtems, represented at their interface by a

function entity. Such an “administrative” function entity controls and manages on one hand the interface to the

outside world and on the other hand further subsystems contained in it.

The interface of a function entity consists mainly of a set of interface ports each of which has a number of

valid incoming and/or outgoing message types associated with it.

If a function entity controls and manages subsystems, it may decide upon their creation, deletion (using

operations CREATE, TERMINATE and EXIT) and interconnection. For interconnecting its subsystems, a

function entity decides on the connection of the interface ports of the subsystems

a among each other using the operation CONNECT,

l to its own interface ports and thereby to the outside world using the operation MAP,

l to its so-called inner ports, also using the operation CONNECT.

There exist reverse operations and others not mentioned here. Inner ports are invisible at the interface to the

outside world, meant only for message exchange between the function entity and the administered subsystems.

Fig. 2 shows the above operations in an example to illustrate the structuring concept for distributed ap-

plications. Function entities are drawn in trapezoidal shape, dashed lines surround subsystems, and solid line

rectangles stand for ports.

Fig. 2: Structuring of a distributed application

3.2.2 Dynamics at runtirne

The DC specific list concept provides for an indefinite, unrestricted number of objects and object references, e.g.,

function entities, network nodes, and communication ports.

3.2.3 Naming rules

DC requires the explicit naming and declaration of all communication ports, message types, and subsystems

administered. This allows, e.g., compile-time and runtime checks and the generation of graphical displays of

Annual Simulation Symposium

MUHLHAUSER

the distributed application structure. Moreover, all possible asynchronous events, called etceptions, have to be

named in a specific program section, together with their handling. Structuring rules also apply to the program

text for a function entity.

Communication: For a high degree of flexibility, a relativly simple basic communication concept was intro-

duced. Communication is based essentially on the two operations TRANSMIT and GET, for message transmission

and receipt. The basic operands ace an output or input port and a message or message pointer.

GET enables input message selection according to reception port or message type. Arbitrary combinations of

ports, port lists, and message types may be enumerated in a GET statement: either one specific port, or a set of

ports, or every port may be specified valid, respectively; the same applies to message types.

Selective GET statements may be followed by a SWITCH statements, rendering a functionality comparable to

the so-called ‘guarded commands’ [Dij75]. GET is implemented synchronously, i.e. if no corresponding message

is stored in the input ports of the function entity, the function entity waits until a corresponding message arrives.

To avoid undesired waiting phases, a TEST function is available, analogous in syntax to the GET operation. The

boolean function TEST returns true if a corresponding message is stored in the input ports of the function entity.

To enhance the synchronization capabilities, TRANSMIT offers the option to delay the transmission of mes-

sages. Thus, e.g., a time-out mechanism can be implemented by a delayed TRANSMIT to the transmitting

function entity itself. Delayed transmission of a message can be withdrawn using the operation CANCEL.

3.3 Computer assisted modeling

With the computer assisted modeling technique of the system DESIGN, the DC program text of the distributed

application under development is used as it is, translated by the DC pcecompilec into special simulation-oriented C

code. The DESIGN system combines the resulting simulation-oriented function entities with a special simulative

runtime environment described in chapter 4, both running on top of the kernel system for simulative modeling

described in chapter 2. The modeling system comprises models for the central resources (CPU and main memory),

for disk i/o subsystems, for terminal i/o subsystems, and for the communication subsystem. In addit,ion, the

simulative cuntime environment contains pacts which ace almost identical to those of the real-system runtime

environment, like certain monitoring facilities, the function entity administration system, etc.

The above means that the differences between real experiments and simulative experiments lie in the different

cuntime environments and in the translation by the pcecompilec into either the real system or a simulative model.

The DC program text for both experiment types does not differ at all. This transparence of DC source code was

achieved by introducing four DC features, namely virtual junction entities, the common message exchange basis,

computing phases and interaction points, and the ezplicit naming of undeveloped code.

3.3.1 Virtual function entities

In DC, terminal i/o and disk i/o are programmed in the same manner as the communication between function

entities: e.g., a function entity intending to do disk i/o does this by communication with a so-called virtual

function entity for disk i/o. The opening of a file corresponds to the connection between a port of the function

entity to a port of the victual function entity for disk i/o where the port name reflects the file name. Putting a

record onto a file corresponds to TRANSMITting a message to the virtual function entity at the corresponding

port (there are pcedefined message types corresponding to file records). A record is read from a file by issuing a

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 19,

GET on the corresponding port; a file is closed by disconnecting the ports.

Terminal i/o is analogously performed by communicating to a virtual function entity for terminal i/o.

The virtual function entity for command input enables a user to transmit simple commands to a distributed

application using the standard system command level of the operating system he is using.

In addition, further system-specific virtual function entities may be developed on request, providing interfaces

to, e.g., special communication services, databases, application, process control systems, etc., which are to be

accessed by or incorporated into a distributed application.

Relation to computer assisted modeling:

Translating a distributed application program for real-system experiments, the precompiler translates communi-

cation with virtual function entities directly into disk i/o, terminal i/o, etc., i.e. in real-system experiments the

virtual function entities do not really exist but provide a consistent view of peripherals or services to be accessed

by a distributed application.

In the simulative runtime environment, the virtual function entities are represented by parts of the modeling

system, i.e. the virtual function entities stand for model3 of the peripherals or services to be accessed. The com-

mon treatment for every possible communication partner, may it be another part of the distributed application,

a peripheral, or a service, makes it possible for the precompiler to easily switch between real usage of peripher-

als/services and modeling of such (in fact, a user may request that, e.g., both the modeling of disk i/o and real

disk i/o take place in a simulation experiment).

3.3.2 Common tnessage exchattge basis

The common message exchange basis means that all interactions of a function entity with its outside world are

effected by the four communication operations TRANSMIT, GET, TEST and CANCEL. For message exchange

between fuuction entities this is trivially true; for disk and terminal i/o, command input, and specific services,

the common message exchange basis is introduced via the virtual function entities. As for the administrative

operations of a function entity, like MAP, SERVE, CREATE, and so on, these operations are translated into

messages which are TRANSMITed to the runtime environment of a distributed application, more precisely called

local administration entity (this term describes that part of the runtime environment which resides on the same

network node as the function entity).

Relation to computer assisted modeling:

Regarding the four basic operations one finds that, for modeling purposes, TEST and CANCEL can be emulated

by specific TERMINATE and GET operations exchanged with the model of the local operating system (see

below). Therefore the computer-assisted modeling technique has to distinguish in principle only two basic types of

interaction, whereas all other types of interaction (i/o through virtual function entities, administrative operations,

TEST, CANCEL) base on these two operations.

3.3.3 Cotnputing phases and interaction points

The points in the program text where interactions (administrative operations, mesyage exchange with other

function enl.ities, or communication with virtual function entities) are performed are called interbction points as

opposed to computing phases. Computing phases are program sections which do not contain any of these two

operations. The effects of any actions undertaken in a computing phase remain internal to the function entity

Annual Simulation Symposium

198 MUHLHAUSER

until the next interaction point is reached; the only external effects of computing phases lie in their consumption

of the central resources cpu and main memory.

Relation to computer assisted modeling:

All points in the program text of a function entity where interactions are performed may easily be identified, as

they are well-defined; administrative operations and message exchange operations - deahug with either real or

virtual function entities - are identified by keywords of the language DC and can be processed by the precompiler.

Moreover, after translation of administrative operations, TEST, and CANCEL, the computer assisted modeling

technique has to deal with no more than two types of interaction points.

To recapitulate, a function entity can be viewed as an alternating sequence of computing phases and interaction

points, a computing phase has no side effects but consumption of central. resources, and an interaction point may

be either a TRANSMIT or a GET.

3.3.4 Explicit naming of undeveloped code

This term denotes the programming rule a programmer has to conform to, so that computer assisted modeling

can be applied. When, in early phases of the distributed application development, the programmer outlines

function entities by programming only essential parts of the function entities, i.e. those parts which form the

sceletal structure of what the function entity is thought for, the parts of computing phases left out have to be

explicitly denoted by statements of the form

to-develop <ident> ‘I *’ <description> ‘* 1’

<unit> <magnitude> substitution <statement>;

where <ident> uniquely identifies the section to be developed, <description> gives a verbal description of what

the section to be developed is supposed to do, <unit> and <magnitude> represent the programmer’s estimate of

the amount of cpu necessary, stated as either the number of statements, or liues of code, or milliseconds of cpu.

The amount of main memory occupied by the function entity is stated as one of the simulation parameters. The

SUBSTITUTION part indicates interim code necessary to ensure the semantical and pragmatical correctuess of

the function entity code in the absence of the code to be developed.

Analogous to computing phases to be developed there may be message parts to be developed - i.e. in early

development phases dummy messages or message parts ma.y be used. If such dummy messages arc shorter in

length than expected for the final messages, this has to be stated in the program text, too.

In order to assure a consistent view of the abstraction level for all function entities at a certain development

phase, a central message definition is used where the types of all messages to be transmitted between function

entities have to be defined.

The relation of the explicit naming of undeveloped code to computer assisted modeling will become evident

in the next two sections.

3.3.5 Modeling technique - simplified:

In the next two sections, we will show how the precompiler modifies the source code of prototype function entities

in order to construct a model of the future distributed application. We will concentrate on the modeling technique

as pertaining to the consupmtion of central resources, i.e., main memory and (mainly) CPU. As for the modeling of

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT ,99

disk i/o, terminal i/o, etc., the precompiler mainly has to modify the messages exchanged with the corresponding

virtual function entities; for the sake of shortness, these parts of the modeling technique shall be left out.

It was shown how the concept of virtunl function entities and the common message ezchange basis enable the

view of a function entity as consisting of a sequence of computing phases and interaction points. On a simplifying

level of abstraction, the modeling technique may be viewed as follows:

COMPUTING PHASE:

Iinside a computing phase, the DC preprocessor adds statement to the program code which sum up the

amounts of central resource (CPU and main memory) required by the computing phase. These amounts are

determined by the precompiler according to the type of statement and operands, using predefined values specific

for the type of computer to be modeled; these predefined values are generated by a dedicated calibration tool.

The additional statements inserted by the precompiler sum up these amounts of central resource in local variables

at runtime, so that, e.g., an arbitrary number of loops can be considered. For undeueloped code the programmer’s

estimates are used as given in the to-develop-statement, multiplied by a machine-specific factor calculated by the

calibration tool mentioned.

INTERACTION POINT:

At the end of a computing phase, before an interaction point, statements are added for communication with a

model of the local computer and it,s operation system, called os-kernel-model (described in the following chapter).

First, a message called ‘re~ovce request’ is transmitted containing the amount of central resources requested in the

passed computing phase. The os-kernel-model then simulates the consumption of these central resources. Then, a

‘resource actnowIedgement’ is sent from the os-kernel-model to the function entity. Finally, the interaction takes

place as specified in the interaction point.

os- kernel model

funclion enlity central resource
/request

simulation
of resource
usage

.
-resource ack

interaction point
.

interaction
L

Fig. 3: Message flow for the simplified modeling technique.

3.3.6 Modeling technique - optimized:

The technique described can be optimized further. It is obvious that only for interactions of type GET the flow of

actions of a function entity may depend on the progress of other function entities (i.e., of the time and sequence

of the a.rrival of messages), whereas interactions of type TRANSMIT do not further influence the flow of actions

of the 1,ransmitting function entity. Therefore, a function entity might synchronize with the OS-kernel model not

before every interaction point.

The progress of the function entities according to simulation time, however, is by far mutually dependant

Annual Simulation Symposium

200 MiiHLHliUSER

through the competition for central resources. Therefore, a function entity willing to transmit a message does not

know the simulation time associated with the TRANSMIT operation unless the os-kernel-model has acknowledged

the resource pertaining to the preceding computing phase. The modeling technique used in the DESIGN system

is therefore (roughly) as follows:

l the precompiler adds statements to the function entity code such that a function entity passes computing

phases as well as TRANSMIT-type interaction points without interferring with the OS-kernel model. While

doing so, the function entity builds up a so-called sequence message consisting of ‘resource requests’ (for

every computing phase, see above) and of ‘TRANSMIT descriptions’ describing TRANSMIT-type interac-

tions. The real messages pertaining to a TRANSMIT-type interaction are immediately transmitted to their

destination, but are treated ‘nonvalid’ by the destinated function entity, see below. Reaching an interaction

point of type GET, a ‘GET description’ is entered into the sequence. The furhter flow of actions depends

on whether or not a valid message corresponding to the GET has already arrived. If so, the GET-type

interaction is satisfied and the next computing phase is handled as described above. If not, the function

entity transmits the sequence to the OS-kernel model and waits for a resource aclznowledgement as described

for the simplicied modeling technique.

l The OS-kernel model simulates the consumption of central resources according to the different sequences

received by the different function entities (see next chapter). Reaching a ‘TRANSMIT description’, the

OS-kernel model knows the simulation time pertaining to the corresponding TRANSMIT. At that time, the

OS-kernel model sends a TRANSMIT oc nozuledgernent to the destinated function entity of the TRANSMIT k

which turns the message (that was already received from the originating function entity) from ‘nonvalid’ to

‘valid’.
function entity,

OS- kernel model

Fig. 4: Message flow for the optimized modeling technique.

4 Modeling system

4.1 Components of the simulative runtime environment

The modules of a simulation experiment are distributed among the network nodes on which the experiment

shall actually run; these (physical) network nodes are called the underlying distributed system. The vnderlyitzg

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 261

distributed system is to be distinguished from the modeled distributed system which consists of modeled nodes

and of modeled communication subsystems. The kernel system for distributed simulation is distributed over the

underlying distributed system and makes the latter transparent to the simulation model.

A modeled node consists of the following parts:

l the function entity models destined for that node,

l the local administration entity,

l the os-kernel model,

l file modules (modeling ‘virtual function entities’ for disk i/o, see above),

l the system workload (modeling the behaviour of interactive users and their processes),

l the application workload (modeling users of the distributed application), and

l workload generators (one fore each type of workload).

The modeled communication subsystems build up the model for the network interconnecting the modeled nodes.

modeled node

I aenerator J I

.functlon
entities

. administration
entity

kernel system for distributed simulation

underlying distributed system

Fig. 5: Distributed application model

Fig. 5 shows an example of the model of a distributed application. The figure does not show ‘logical’ commu-

nication links between the model parts, but illustrates the modularization from the point of view of the kernel

system for distributed simulation. All the model components shown in figure 5 exist as predefined building blocks,

parametrized and configured by an experiment definition tool and an experiment control tool which are part of

the DESIGN software production environment (see next section). A more detailed description of the modeling

concept cau be found in]Mi!rD86].

Annual Simulation Symposium

202 MiiHLHliUSER

4.2 OS-kernel

The structure of the central part of the OS-kernel model is described using a pseudo code similar to DC. The

OS-kernel manages all entities contained in a network node, where the function entities, the administration entity,

the virtual function entities, and the models of the system workload processes are denoted as entities. The

allocation of the central resources to all sorts of entities and the interactions between entities are controlled by

the OS-kernel. The resource management is controlled using the above described sequence ttlessages, the elements

of which consist of a cpu time request for a computing phase and of a description of the succeeding interaction.

Every entity is described by a strucl which contains the actual sequence message, a boolean variable MATCH

indicating whether the GET which terminates the sequence message has been satisfied already by a matching

message, and a pointer to management data about the entit,y. The sequence message is stored as a DC list named

seq<<>>, where ‘<>’ is the DC symbol for lists.

The entity descriptions of running ent,ities are stored in two lists, computable<<>, and waiting<>>. The list

of computable entities is ordered according to the cpu time request of the first element in their sequence message

in increasing order. Therefore the first entity, described by computable< 0 >, is the one with the minimal cpu

time request to be satisfied before the next interaction point. The main loop of the os-kernel roughly executes as

shown in figure 6 (cf. explanations below).

loop begin
service-time = compute-svt(computable<< 0 >>.seq< O>>.cpu-time,

computable.length);
start-time = time;
delay (service-time);
if pre-empted

then cpu_time-passed = get-cpu-time-passed (time, start-time);
else cpu_time-passed = computable< O>>.seq< 0 >>.cpu-'cime;

for (i = 0; i++; i < computable.length 1 begin
computable<< i>>.seq< O>.cpu_time =- cpu-time-passed;
if computable< i>>.seq< O>.cpu-time == 0 then

switch (computable< i >>.seq<O>.type) begin
case transmit:

transmit (computable(<i>>.seq<< O>>.interaction);
removefirst-element (computable< i >> .seq) ;
reschedule (computable< i >);

case get:
if computable<< i >>.match then begin

computable<< i >> .match = false;
remove-sequence (computable< i >>) ;
receivenew-sequence (computable< i I$) ;
reschedule (computable<< i>);

end else
put-into-waiting-list (computable< i >I ;

end ;
end ;
if pre-empted then transmit. (preemptingmessage);

end;

Fig. 6: Pseudo code for main loop of OS-kernel

The OS-kernel first computes the expected time necessary to satisfy the cpu time requested until the next in-

teraction point. This time, called serviceAime, is computed out of the number of computable entities, com-

putable.length, the cpu time requested, computable<< 0 >>.seq< 0 >>.cpu-time, and of some system parameters

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 203

(size of main memory etc.). Note that service-time is a simulation time.

The OS-kernel is then suspended for a time period of length service-time. The OS-kernel is reactivated, either

after service-time has passed or when the OS-kernel is pre-empted by a ‘TRANSMIT description’ arriving from a

virtual function entity (for the notion ‘TRANSMIT descriptiou’ see 3.3.5). In either case, the cpu time requests

of all entities are decreased by the cpu time corresponding to the time passed.

If no pre-emption occurred, at least the first entity in the computable list has (in simulation) reached its first

interaction point. In its sequence, this interaction may correspond to either a ‘TRANSMIT description’ or a

‘GET description’.

If the interaction point is a TRANSMIT, the corresponding ‘TRANSMIT acknowledge’ is transmitted. If

the TRANSMIT matches a GET terminating a sequence message of a computable entity, the variable match

of the receiving functing entity is set true. If the TRANSMIT matches a GET of an entity in the waiting list,,

the corresponding entity will be activated by the ‘TRANSMIT acknowledge’ sent; in this case, a new sequence

message is awaited from this entity and the entity description is scheduled into the computable list according to

its first cpu time request, as above.

If the interaction point is a GET and the GET was matched already, then the matching message has already

activated the corresponding entity and a new sequence message can be received. After the arrival of the sequence

message, the entity is rescheduled as above. If the GET has not yet been matched, the entity description is

transferred into the waiting list.

If a pre-emption occurred, a ‘TRANSMIT acknowledge’is transmitted according to the ‘TRANSMIT descrip-

tion’ received from a virtual function entity.

4.3 Workload

Workloads are modeled by workload generators, one per node for the system workload and one per node for the

distributed application workload. Every workload generator is configured by the user at experiment definition

time. The user may define an arbitrary set of arrival processes, each of which is characterized by a statistical

distribution, by the parameters of the distribution, and by the user-defined name of the so-called load type.

In addition to the simple load types offered by DESIGN, th e user may program its own load types in DC.

4.4 Further modules

For file modules and communication subsystems DESIGN offers standard models. To a certain extent, these

models can be adapted to the distributed system to be modeled by parameters like mean access time for disks,

protocol parameters and performance data for communication subsystems, etc. In addition the user may build

its own models and implement them as separate modules of type ‘file module’ or ‘communication subsystem’.

Sceletal DC programs are offered for such extra modeling so that, e.g., the interface definition is compatible to

that of staudard models.

5 The System DESIGN

In this chapter a short overview is given about the embedding of DC and the simulative runtime environment

iuto the sysl,em DESIGN. The main parts of DESIGN are the user interface, tools, project data and runtime

environments.

Annual Simulation Symposium

204 MUHLHAUSER

Project data: As distributed applications may be large and complex, several programmers may be involved

in their development; a distributed application will normally be kept in a series of versions where, e.g., simple

versions may be used as simulation models for more detailed versions. Regarding these facts, DESIGN defines a

so-called worlzing contezt which is characterized by

l the actual distributed application,

l the current version,

l the actual function entity,

l the runtime environment (real-system, simulative, or other),

l the experiment definition,

a the name of the programmer, and

l the actual node in the underlying distributed system.

These classification points form the basis for the structuring hierarchy for project data in DESIGN. The DESIGN

user interface centrally controls access to and usage of all project data; specific ‘rights lists’ control access rights

of different users.

Software lifecycle: DESIGN conceives a distributed application development as an iterative walk through the

four basic phases CONSTRUCT, COMPOSE, CONTROL, and CONCLUDE; in addition, there is a phase called

MANAGE which can be entered from any other phase. In each phase, the programmer may chose from a number

of actions.

Tools: The large set of tools offered to the user includes those pertaining to the runtime environments,

like experiment definition and experiment monitoring tools. Most tools are specific to a certain phase and

implemented as actions in these phases, e.g., a language specific editor in phase CONSTRUCT, graphical aids in

phase MANAGE, a playback tool and a distributed debugger in phase CONTROL, etc.

User interface: The DESIGN user interface is based on a workstation with a high resolution monitor, multi-

windowing and keyboard plus graphics input (e.g., mouse). The user interface guides through the phases of the

software lifecycle and provides a common access method for all tools, where the parallel usage of different tools

is possible by the multiwindowing feature. Commands are selected using icons, and where alphanumerical input

is requested, command boxes with preset values are available. Structuring rules apply to the monitor display,

including positioning rules for status and message texts, help displays, and icons. A typical screen layout of the

user interface is shown in Figure 7.

Annual Simulation Symposium

USING DISTRIBUTED SIMULATION FOR DISTRIBUTED APPLICATION DEVELOPMENT 205

Fig. 7: Screen layout of the DESIGN user interface

6 Conclusion

The paper shows how distributed simulation can be used for the development and performance evaluation of

distributed applications. A main result is that the integration of the real programming and of the simultive mod-

eling in one common software engineering environment can essentially facilitate the use of simulative performance

evaluation.

The simulation oriented features form only a part of DESIGN; the power of DESIGN lies in its integration

of distributed programing, software engineering, and performance evaluation. Almost all part.s of the DESIGN

system according to the current concept are fully developed and operational. Experimental applications have

been developed using the system. Some work is still undertaken in order to fully integrate the modeling part of

design with the other parts.

Annual Simulation Symposium

MijHLH;iUSER 206

References

[Bry79] Bryant, R.E.:

Simulation on a Distributed System.

Proc. IEEE, CHi445-6/79, 1979

[ChMBl] Chandy, K.M., Misra, J.:

Asynchronous Distributed Simulation via a Sequence of Parallel Computations.

CACM, Vol. t4, No. 11, 1981, pp. 198-606

[Dij75] Dijkstra, E.W.:

Guarded commands, nondeterminacy, and formal derivation of programs.

CACM, Vol. 18, No. 8, 1975, pp. 453-457

[Jef83] Jefferson, D.:

Virtual Time.

University Of Southern California, Los Angeles, CS Dept.; T&83-213, May 1983

[MiiD86] MiihlhEuser, M., Drobnik, 0.:

[Ker78]

in: Shoemaker, S. [Ed.): Computer Networks And Simulation III,

North Holland 1986, pp. 361-383

Kernighan, B.W., Ritchie, D.M.:

The C Programming Language.

Prentice-Hall 1878

[Pea801 Peacock, J.K.:

Integrated Development And Performance Evaluation Of Network Applications Using Distributed Sim-

ulation.

Distributed Simulation Using a Network of Processors.

Dept. of CS and CCNG, University of Waterloo, Ontario, Canada; CCNG T-Report T-87, January

1980

[WoM83] Wolfinger, B., Miihlhiuser, M.:

Construction Of A Validated Sitnulator For Performance Prediction Of DECnet-based Computer Net-

works.

Performance Evaluation Review, 8/83, pp. 138-150

Annual Simulation Symposium

