Current Trends:
Distributed Programming -
Software Engineering -
Object-Oriented Techniques

Dr. Max Mihlhauser

University of Karlsruhe, Institute for Telematics
Zirkel 2, D-7500 Karisruhe, W. Germany
Tel. (+49) 721-608-3391

It is a common complaint in the computing departments of medium
to large companies these days: they cannot sufficiently meet the
demand for ever higher integration of their application software
into computer integrated manufacturing systems, distributed office
automation systems, enterprise-wide information management sys-
tems etc. While the hardware requirements can be largely met with
state-of-the-art distributed system technology, no sufficient con-
cepts for development and integration of distributed application
software are available.

We believe that a synthesis of three large areas of computer sci-
ence is necessary in order to counterface this problem: distributed
programming, software engineering, and object-oriented tech-
niques.

The contribution tries to give an introduction to and show current
trends in the three areas, as an introduction to the fields covered by
the workshop sections. Open issues and approaches to a synthesis
of the three areas are sketched in order to demonstrate the purpose
and leading topic of the workshop.

1 Introduction

This paper is intended as an introductory overview of the workshop topics, leading to the contri-
butions in the sessions which follow. More precisely than by ‘distribution and objects’, the cen-
tral theme for the workshop can be called ‘support for the construction of complex software, with
a focus on both the distributed nature of such software and on the use of object-oriented tech-
niques (cf. [REN82, WEG87]) for supporting their construction’.

In this context, we would first like to introduce the problem area by describing the typical sce-
nario for a distributed application we have in mind. This will be done in chapter 2, reflecting the
underlying system, distributed (and object-oriented) programming aspects, and software engi-
neering environment aspects. In the following chapter, recent advances in distributed program-
ming, in object-oriented techniques, and in software engineering shall be briefly sketched, along
with major open questions to be possibly elaborated in the workshop.

-2 Principles of distributed applications

2.1 Underlying system scenario

In the nearer future, the development of medium to large computer installations will be driven by
the following developments:

o Increasing decentralization: the workstatdon generation which currently replaces the PC
generation of systems will represent a major push towards distributed systems: their in-
creased power and easy network integration makes workstations feasable for performing in-
tegral parts of an enterprises data processing on them; while PCs were largely used for iso-
lated tasks such as desk top publishing or for sophisticated terminal emulation, workstations
are about to become an integral part of an enterprises computing system and of the enter-
prise-wide data processing procedures.

o Consolidation of transport subsystem: The establishment of the OSI protocols has laid a
common ground for the construction of large heterogeneous networks. This robust, well-
established, and well-understood transport-oriented protocol stack represents another major
step towards making distributed systems widely usable for application programmers.

It has to be mentioned, however, that the further introduction of the OSI protocols will be
restrained by a number open issues to be resolved:

- Public networks evolve towards [SDN and the issue of integrating the OSI and ISDN
protocols and networks is still not totally resolved.

- With the introduction of fast communication media, the effort necessary for message
processing in the ‘protocol stack’ - formerly an overhead of a small percentage - has
become the gating factor and bottleneck.

Principles of distributed applications

[£9]

- For the forseeable future, neither communication capacities nor communication pattermns
will consolidate: capacities beyond those of FDDI and Broadband-ISDN are investi-
gated, and communication patterns like those of individualized interactive multimedia
applications continue to influence the view of a ‘typical’ network load.

o Changing cost-benefit-ratio of remote operations: while the power of individual nerwork
nodes - especially workstations - is often said to be exponentially growing, the communica-
tion capacity of typical networks is growing even faster: the introduction of dedicated ca-
bling (mainly coax) with the first generation of LANs and the recent - and ongoing - intro-
duction of fibre optics cabling in both LAN and WAN installations is about to drastically
decrease the ‘penalty’ for carrying out operations remotely. This, again, makes distributed
programming much more attractive. '

These aspects will lead to 2 much increased demand for distributed applications. The application
domains for complex, highly distributed applications can hardly be forecasted because today’s
imagination is too much bound by the application structures and domains we know today. Some
example fields can however be cited today already, and in special areas, e.g., computer inte-
grated manufacuring, office automation, or globe-spanning management-information systems,
many of the problems discussed in this article have become the daily bread of software engineers
already.

2.2 Distributed application scenario

2.2.1 Network transparency and partial distribution transparency

In this context, we want to distinguish nerwork transparency, i.e. invisibility of the network’s to-
pology and structure and of the physical location of components, from distribution transparency,
i.e. transparency of the distributed nature of the underlying system and of the application. One
might forsee for the future that after a short transition period, distributed programming would
lose its mystery due to the introduction of distributed operating systems, sophistcated object ori-
ented support systems, and/or powerful name services; these would offer both network and dis-
tribution transparency; and the user could - at the sematic level - continue to use traditional pro-
gramming languages, at most concurrent programming languages.

Distribution transparency is however in many cases not the goal of the application programmer.
Very often, for example, he may want to make use of his knowledge about the application struc-
ture and behaviour in order to give input to some distribution service (e.g., the runtime system of
the programming language) about how to optimize application performance by distributing ap-
plication components. Or it may be that users (humans and technical processes) located at differ-
ent sites have to be served and the fact that they are not all on one system has to be reflected in
the application structure. Overall distribution transparency is therefore not likely to be the com-
mon ground for the programmer to build on in the mid term future, while nerwork transparency
is likely to become mature very soon.

Although we said that there will be no overall distribution transparency soon, there will well be
sectionwise distribution transparency: first, some local clusters of nodes will be part of distrib-

Principles of distributed applications

Lo

SR————

uted operating systems - offering distribution transparency among the active objects within that
cluster; second, some nodes will also offer distributed databases, offering distribution transpar-
ency among the related data; and third, value added networks will evolve to powerful ‘network
machines’, offering distributed services to the user with distribution transparency as well. These
three developements will however, as stated, only lead to large and powerful ‘meta-nodes’ in a
larger distributed system, with distribution transparency offered wirhin every meto-node.

2.2.2 Structural characteristics

Most problems associated with distributed applications would not vanish given even full distri-
bution transparency. This is due to the fact that many of these problems are not exclusively
bound to the distributed nature of the underlying system. Rather, they are often present in se-
quential or concurrent programing already, but become visible and serious along with the use of
distributed systems as a basis for application programming. The main characteristics and prob-
lems which deteriorate with distributed application programming are listed below:

a. Structural parallelism: we consider most of the parallelism exploitable in a distributed appli-
cation to be structural (‘coarse grained’), i.e. introduced in the process of mapping different,
largely independent objects of the real world to - again largely independent and by nature
parallel - program entities. Communication and synchronization of structurally parallel ob-
Jjects are introduced to have these objects contribute in synergy to an overall goal. We distin-
guish structural parallelism from rather functional (‘fine grained”) parallelism; the latter term
means that a selfcontained algorithm or operation - which in most cases could even be de-
scribed much more easily in a sequential way - is ‘parallelized’ for computation speedup.
The distinction between structural and functional parallelism may seem to be philosophical,
but it is in fact largely the reason for the further characteristics listed here and in this role
presents the major reason why distributed applications are and will be much different from
typical concurrent programs as known today; a reason, once again, which is not bound to dis-
tributed applications, but characteristic for them.

b. Mulnple distributed threads: parallelism is typically achieved via multiple threads. Many
concurrent implementations offer multiple threads as ‘lightweight processes’ within a single
operating system process. Many distributed applications were realized in the past via multi-
ple heavyweight processes, each containing a single thread, and with every process bound to
a computer. More recent developments, especially along with object-oriented techniques,
tend to hide implementational considerations such as whether to use a lightweight or a heavy-
weight concept in one or the other case. An ‘active object’ is allowed to contain several (‘fine
grained’) threads, and to span multiple nodes.

c. Toplevel complexity: It is at the level of these ‘active ohiects’ that distributed applications
show a high degree of complexity. Hundreds of active objects, pertaining to tens of types, are
not unusual already in present advanced distributed applications. Information hiding and top-
down structuring principles are, however, often introduced within single active objects only:
in ‘classical’ languages, these are the modules, procedures, functions etc. which a single
process may consist of.

d. [rregulariry: while functional parallelism is very often regular in nature (cf. recursiveness of

Principles of distributed applications

TP P—

divide-and-conquer algorithms or multiple parallel data streams as used in many image ma-
nipulation algorithms), structural parallelism is typically much less regular. This increases
complexity and decreases visualizability and comprehensiveness inherent in distributed ap-
plications.

Dynamics: characteristics like the workload input to a distributed application, the network
nodes involved, and the number of users logged in to the application, typically vary substan-
tially not only from one execution to the other, but also within runtime of a single execution.
In a distributed application, one wants to or has to react to these dynamic changes by dy-
namic changes of the application topology (number and interconnections of active objects)

Asynchrony: if parallelism is to be exploited extensively, this increases the number of poten-
tial asynchronous events to consider. In sequential applications, runtime errors are often the
only asynchronous events possible, and these are often disregarded by the programmer. A
distributed application programmer has to face a higher probability of runtime errcrs due to
the reduced reliability of the overall distributed system (total failure transparency not being
expected to be commonly available soon), and he has to reflect asynchronous everits gener-
ated by the differ=nt active objects running in parallel.

Multiple conceptual models for communication: in large applications, the active entities often
follow quite a number of different communcation parterns and architectures [FOR86}: par-
rerns like message exchange, remote invokation, or atomic transaction-like data exchange us-
ing point-to-point or multipoint connectivity, in synchronous and asynchronous variants,
within client/server, actor, or balanced architectures, and many many more. A single archi-
tecture and pattern tends to bind the user to a single model in an untolerable way [TAN8S].

Figure 1 shows a sample structure of a comparatively small distributed application in an environ-
ment with partial distribution transparency, trying to demonstrate the characteristics described in
2.2.1 and 2.2.2. The active objects of the distributed application are shaded in black, with the
solid lines between them indicating their logical interconnection structure, and the gray-shaded
parts indicate ‘meta-nodes’.

2.3 Environment / tool scenario

2.3.1 Application distribution

The characteristics of distributed applications as described in the above section lead to a number
of requirements on the features of adequate software engineering environments and tools. Some
major requirements are listed below:

Adequate design support: the design methods common for sequential, even for concurrent
programming are inadequate for distributed applications. Most of the characteristics and

Principles of distributed applications -.

194 g 12)

Figure 1: Example distributed system scenario with example distributed application

problems mentioned in 2.2.2 and 2.2.3 are not sufficiently reflected there. New design meth-
ods and adequate tools have to be introduced. Simultaneous support for graphical and alpha-
numerical design, animation support, seamless integration with the implementation lan-
guage, are some of the requirements imposed on any design method today, which have to be
met by design methods for distributed applications as well.

Principles of distributed applications

o0 Adequate implementation support: the implementation language, together with tools like
source code control and software reuse aids, have to reflect the specifics of distributed appli-
cations as well. As we will see in chapter 3, existing languages provide only point solutions
to the proble~- mentioned in 2.2.

o Distribution / installation support: today, standard media copy utilities plus tailored com-
mand procedures are mostly used for installation of software products on target systems.
The installation of distributed applications on a whole network cannot be carried out effi-
ciently using such techniques. Rather, the software engineering environment has to provide
tools by which tailored installation support can be prebuilt. Such installation support is to be
executed on the target system, providing central control and high-level semantics for the in-
stallation of the application on the target network, including, e.g., parameter file distribution,
network-wide logical name definition, etc.

0 Monitoring / control and data collection / analysis: starting, observing, and manageing the
execution of an application can largely be performed with operating system utilities in the
sequential, single-system case. In the distributed case, corresponding and suitable support
tools are normally not offered by the network operaticn / management software. They have
to be provided in the software engineering environment. Collection and analysis of data
about the application, for diagnose, optimization, accounting and other purposes, is another
field which is (although to a lesser extent) supported by operating system utilities in the se-
quential case; once again, the environment must provide appropriate support in the distrib-
uted case.

0 Distributed debugging: in the debugging area, the additional problems imposed in the dis-
tributed case are conceptually very hard to deal with. The lack of synchronized clocks, the
true parallelism leading to (pseudo-) simultaneous events, the deffering influence of debug-
ger software, the information quantity, the additional semantics of distributed applications,
all these problems require thorough conceptual consideration. In fact, we regard distributed
debugging as one of the most difficult problems in distributed application development
[FAGES].

In addition to the problems and requirements imposed by the distributed nature of the applica-
tions considered, there are requirements which again are present already in the sequential case,
which just become more important in the distributed case. Among them are ‘programming in the
large’ requirements like sophisticated project management, seamless tool integration, or ‘envi-
ronment distribution’ as described below.

2.3.2 Environment distribution

Developing (and, e.g., testing) distributed applications, the application programmers will most
likely work in a distributed system themselves. Being highly qualified engineers working in a
large software project, they will most likely dispose of individual workstations.. But this means
that not only the application is distributed, but also the sofrware engineering environment.

Along with environment distribution, we introduce a distinction into three classes of network
nodes (which are not necessarily mutually disjunct):

Principles of distributed applications

0 Development nodes: these are the nodes on which the development of a distributed applica-
tion takes place, up to the point when the code is ready to be transferred to the target execu-
tion network(s) (note that this network is not necessarily different).

0 Execution management nodes: as stated in 2.3.1, the management of an execution of a dis-
tributed application (distribution / installation, monitoring / control, data collection / analy-
sis, debugging) is a major task. The nodes from which such execution management is
steered are called execution management nodes.

o Execution nodes: obviously, the application will be executed on a distributed system as well.
The respective nodes are called execution nodes. They have to be online connected to the
execution management node(s), but not necessarily to the development nodes.

Environment distribution, according to our definition, means that the development nodes form a
distributed system. Note that environment distribution makes sense even if application distribu-
tion is not intended.

If environment distribution takes places, one can further distinguish several major categories:

0 Data distribution: with the above metioned ‘typical’ environment in mind - groups of soft-
ware engineers with individual workstations, working on one project - the relevant objects
shared within the distributed environment are the development artifacts, i.e., data. Therefore,
a first approach to environment distribution is to install non-distributed environments with a
proper database interface on every workstation, and to exchange the local database by a dis-
tributed one. In the most primitive case, only remote access to centralized data is offered.
More sophisticated of course are truely distributed databases, offering the possibility to store
those data local to the software enginec: which he accesses relatively often.

o Functional distribution: in a next step, one can look at the coarse functional structure of a
software engineering environment, distinguishing the human interaction layer (HIL), the
functional layer (the tools, in essence), and the data layer. Along with the workstation era,
HILs tended to be clearly separated from the functional layer; it was therefore an obvious
step to distribute the HIL and the functional layer among different nodes. This way, both
compute-intensive functions and graphics-intensive HIL features can be put on the appropri-
ate network nodes. In addition, different functions can be carried out on different nodes. To
summarize, with functional distribution, the HIL layer resides on the users workstation, and
functions are carried out potentially remotely.

o Distributed functions: especially if application distribution takes place, one would think of
turning the functions (tools) in an environment into distributed programs as well. In com-
pute-intensive areas, most notably in simulation (used in software engineering environ-
ments, e.g., for rapid prototyping and performance evaluation), distributed solutions exists
today already. Object-oriented programming will further help to build distributable tools.
This way, load sharing can help to make much more efficient use of the potential compute
power inherent in a distributed workstation environment.

Principles of distributed applications

3 Advances and issues

In this chapter, we want to point to recent advances in the fields discussed, and, more important,
we want to raise open issues and questions which we lope to find a common understanding
about in the workshop. As a basis for discussions in the workshop, some paragraphs of the re-
mainder will be shortly rephrased as ‘issues’.

3.1 Distributed and object-oriented programming

3.1.1 Communication

Concurrent languages, like Concurrent Pascal or ADA ([AND83]), have been designed under the
assumption that concurrent active objects can share common memory. This has lead to a focus
on communication and synchronization models like monitors, which can hardly be efficiently
implemented in a distributed system. (Moreover, those languages did hardly address any of the
characteristics and problems addressed in 2.2.2 and 2.2.3.). Concurrent object-oriented languages
(cf. Concurrent Smalltalk [YOK87]) have put less emphasis on structural parallelism than required
for efficient distributed programming.

Truely distributed languages have very much concentrated on the communication aspect in the
past, i.e., on the provision of sophisticated communication archticetures and pattemns. Some con-
centrated on synchronized message exchange or its more sophisticated extension, the rendezvous
(DP [BRI78]) . Others introduced advanced remote procedure call techniques ([BIR84]) or atomic,
transaction-oriented data exchange (cf. PLITS [FEL79], EDEN [CAL87]). One problem with all the
patterns mentioned here is that they tend to restrict parallelism of the communicating active ob-
jects by extensive synchronization. The highest degree of parallelism can be achieved using
asynchronous communication (cf. DC [MUH88], Soma [KES81], DAC [EBE88, STA88]), or by mul-
tithreaded active objects where only the communicating threads have to be blocked for synchro-
nization (this second approach is sometimes controverse to the programmers conceptual model
and therefore is not very common). On the other hand, asynchrony is often strongly discouraged
as it hinders ‘secure programming’. Another problem lies in the fact that most languages support
only one or a few patterns and architectures, restricting the choice of conceptual models. It has
been shown that asynchronous message exchange, again, might be of great help because any
other model can be efficiently built on top of it (cf. [KES81] along with [BRI78]). Both point-to-
point and multipoint connectivity have to be supported in this case. The ideal solution to imagine
would be a number of predefined packages offering different conceptual models of communica-
tion, built on top of asynchronous message exchange. Semantic checks would have to be offered
by the language tools, and the addition of new models would have to be possible.

Another aspect in this respect is communication abstraction and encapsulation [FOR86, ELR82]. A
very notable effort in this direction is the introduction of ‘scripts’ [FRA85] as a centralized de-
scription of the interaction and behaviour of the partners involved in a communication pattern.
Communicating active objects can then take the roles offered in the scripts. This approach is
taken further in the DODL language of DOCASE [MSH88], where ‘communication relations’ are
offered as part of the toplevel object hierarchy, introducing top-down structuring and classifica-
tion capabilities and clear class / instance distinction (Both DODL and [RUM87] suggest to intro-

Advances and issues

M Lo 1

duce semantics for relations between objects).

Distributed object-oriented systems and languages, such as Distributed Smalltalk [BENS7, CULS?,
DECS86], EDEN [ALMS85], and Emerald [BLA8S6, BLA87, JULS38], use a single communication model
throughout, the method call. As the conceptual model of the user may range from the data ex-
change paradigm to the remote invokation paradigm (which method call is closest to), and as
multipont communication, different levels of synchronization, atomicity and other aspects cannot
be sufficiently reflected, plain method call is obviously not sufficient. Once again, the DODL
principle of introducing semantic relations - and thereby a hierarchy of predefined communica-
tion patterns - represents a step forward in this direction.

Network transparency, even distribution transparency at the level of communication, is offered
by virtually all distributed object-oriented languages. Distribution abstraction - offering access to
distribution information at the level desired, but also abstracting from it at higher levels - is how-
ever preferrable if a communication mechanism wants to make use of the distribution informa-
tion.

[ssue: how to construct a flexible communication mechanism, supporting a large number of con-
ceptual models with semantic checking, providing extendability for new models, offering secu-
rity and asynchrony at the same time, offering abstraction and encapsulation, providing network
transparency and distribution abstraction.

3.1.2 Structuring, abstraction, and transparency

Manageing the complexity of distributed applications is largely related to the availability of pow-
erful structuring, transparency, and abstraction mechanisms. The toplevel complexity of distrib-
uted applications, as described above, can be partly faced with sophisticated strucruring princi-
ples, such as information hiding, top-down and bottom-up design concepts. Examples for trans-
parency (network transparency, distribution transparency, and failure transparency) have been
shortly introduced already. In distributed applicaticns, more areas exist in which one would like
to make characteristics or structures invisible to the programmer (fransparency) or to allow him
to abstract from such at certain levels of consideration (abstraction): performance transparency
(local and remote calls performing nearly identically in object-oriented systems) and communi-
cation abstraction (the ability to abstract from details of communication patterns while designing
an active object) may serve as two further examples.

Structuring, abstraction, and transparency are closely related: hierarchical structuring of entities,
being one of the most common structuring principles, is a special form of building layers; if the
layers within a hierarchy do not exhibit any information about deeper layers, then they also form
an abstraction principle; and if a user is not allowed to go deeper in a hierarchy than a certain
layer, the lower layers are made transparent (of course the difficulty here is that the system has to
match higher layers to the hidden ones without user intervention, so that transparency is not just
an easy add-on to abstraction). Of the various targets of structuring, the most relevant are code,
data, and control flow.

Code: Of the numerous approaches for non object-oriented distributed languages, only few like
DPL-82 (ERI82] and DC offer hierarchical code structuring at the level of active objects. DPL-82

Advances and issues

10

and DC both follow the black box information hiding principle, allowing processes to create son
processes which are invisible to the ‘outside world’. Father and son entities can be seen as hav-
ing a ‘subcontracts’ relation, i.e., a son entity subcontracts to its father in order to realize some of
the functionality exhibited by the father. One of the problems in this type of hierarchical structur-
ing is the question of how to map relations between any ‘sibling’ entities to their respective
‘sons’. PLANET and DC offer sophisticated ways of mapping communication relations between
two active objects to the ‘son’ active objects hidden by them.

Object-oriented languages offer only three kinds of relationships by default: the ‘inherits’ rela-
tion between classes and subclasses, the ‘instantiates’ relation between classes and their in-
stances, and the ‘calls’ relation between a (method-) calling object and a called object. Among
these, only ‘inherits’ is a hierarchical structuring means. Some object-oriented languages offer
means for aggregating objects within an ‘aggregate object’, treated like a single object by other
objects. ‘Aggregates’ relations are less powerful than ‘subcontracts’ relations in that they only
offer an ‘envelope’ around a number of objects, without code or data directly associated to the
envelope. DODL is the only object-oriented language we know of which offers a ‘subcontracts’
relation (via its subsystems).

Issue: Which code structuring principles are to be offered.in order to help coping with the com-
plexity inherent in distributed applications; is there a formal foundation which would allow to
commonly express different structuring principles and which might show to what extend a set of
principles is ‘complete’ or ‘overlapping’.

Data: With the introduction of objects-oriented systems, the differences between data and code
begin to vanish, as all data are encapsulated in the code directly manipulating them. The hope is,
therefore, that with object-oriented languages, code and data structuring can be realized using the
identical principles - maybe the ones just discussed for code structuring. Object-oriented lan-
guages and object-oriented databases, however, represent two ‘worlds’ difficult to merge [TSI88].
This indicates that some severe problems have to be solved if this distinction is to be really re-
moved in the future:

a. Active objects are usually considered as volatile or ‘non-persistent’, whereas data are often
required to be persistent. This distinction of persistent and non-persistent objects has been
carried forward to object-oriented technology, and a seamless integration, e.g., by making
every object persistent, is currently very expensive since, e.g., operating systems can not be
easily built to guarantee persistence of their active objects at any state.

b. If objects are to take the role of data in databases of all kinds, they have to offer the basic
access mechanisms applied to data today, namely sequential access (cf. sequential files), and
selected acceess according to index, query, or hypertext search. None of these is usually of-
fered in object-oriented languages, and only either query search or hypertext search are usu-
ally offered in object-oriented databases.

¢. ‘Classical’ databases on one hand have proven to be badly applicable to many present prob-
lem domains (e.g., software engineering environments); on the other hand, in their strong do-

mains they offer a functionality and efficiency not yet accomplished by any other means. So,
in order for ‘classical’ databases to be replaced by persisten object systems, the latter have to

Advances and issues

i

b b A

perform at least as good as the former in all domains.

Issue: is a ‘persistent object system’, integrating object-oriented programming language and da-
tabase functionality, economically feasable in the near term, and if so, in which domains is it re-
ally advantageous over programming languages and databases, respectively.

Regarding the code as the formal description of contol flow, one could argue that code structur-
ing and control flow structuring are in principle the same. Such a statement, however, neglects
several major facts:

a. In complex applications, especially if they are written using object-oriented techniques, it is
hard to trace and understand the control flow. A method call, for example, may represent a
‘small sub-function’ or the root of a deeply nested, longterm, multithreaded activity. Objects
in the narrow sense - encapsulated data structures, together with elementary operations on
these data or on other objects - have little in common with a complex control flow superim-
posed to a set of objects. This means it may be desirable to decouple ‘basic code’ from con-
trol flow. DODL therefore introduces a specific kind of relational object class, the ‘coopera-
tion’, as the place for complex control flow.

b. Control flow may depend on a number of different aspects, such as the functional aspect of
how the application wants to achieve some task, or the operational aspects of how to best
carry out an algorithm in a specific installation given the network characteristics. One may
want to apply structuring principles for separating different such aspects.

c. At execution time, the operating system process used to be the structuring means for control
flow, as every control flow was matched one to one to a process, together with the pieces of
code associated with the process (linked together in an image). The classical process notion
has come to a limit with the need for ‘cheap’ threads in concurrent languages, the need for
longliving processes in complex applications (e.g., for modeling a long-duration procedure
like that of software production), and the need for node-spanning threads in advanced distrib-
uted applications. Once again, a new specific structuring means for encapsulating control
flow, both at implementation time and at execution time, seems to be necessary.

Issue: Should a specific means for expressing and structuring control flow be introduced, and
how should it look like?

Finally, as we saw in the introduction to 3.1.2, stucturing principles can serve as one abstraction
and transparency means, but they are not the only way to achieve abstraction or transparency of
the network structure, distribution and location of entities, performance differences between lo-
cal and remote operations, and so on. A key question for abstraction principles is: what are the
more abstract notions for the things one tries to abtract from? Stimuli and responses, pre-and
postconditions, resource requirements, and probabilistic descriptions are examples of relatively
generic abstractions. An issue which we want to totally defer to the workshop discussions is
therefore '

[ssue: Which kinds of abstraction, which kinds of transparency are most desirable, which ab-
stract terms exist to describe them?

Advances and issues

e o

3.1.3 Administration

The structural complexity described, along with the dynamics inherent in distributed programs,
require the application programmer to cope with administration of the (active and passice) ob-
jects in a distributed application, both initially and at runtime. Active and passive objects may
have to be created, interconnected, reconnected, relocated, terminated etc.

As languages like PRONET [LEB82], CONIC [KRA83] and DC have shown, code structuring
helps to cope with the administration problem: e.g., in a hierarchically structured approach, the
admunistration of a set of ‘son’ entities can be be described in a clearly isolated way. Known sys-
tems and languages have taken different approaches and have only partly solved the following
1ssues of administration:

a. Administration support at runtime, not just for initial configuration

b. On one hand, clear separation of configuration / administration aspects from functional as-
pects to reduce complexity and enhance reusability and maintainability,

(]

On the other hand, integration of configuration / administration with functional aspects tight
enough so that configuration changes can be requested on the basis of functional decisions
(e.g., additional active entities in compute bound phases etc.).

Sophisticated support for dynamic administration means that a user can forsee - and easily ad-
ministrate - arbitrary numbers of objects at runtime. This means that sophisticated aggregation
types (lists, ordered and unordered sets with ordered and contextual access) have to be provided
for entities (objects) and their relations.

Issue: how can encapsulated configuration support and close interaction with functional code be
achieved; how to associate the active object paradigm and the persistence paradigm to configu-
ration support; are aggregation types the only prerequisite for sophisticated support of arbitrary
dynamic changes?

3.1.4 Integration and extendability

The complexity of distributed applications makes their development a problem of ‘programming

in the large’. Distributed application programming carried out by only one or two programmers
can hardly be imagined. Along with this, the many development aspects of systematic program
development are to be reflected, such as the performance aspect (optimizing the application per-
formance), the reliability aspect (building in fault tolerance), the design aspect (e.g., coupling de-
sign artifacts - formal or graphical design, documentation etc. - with the corresponding im-
plementation artifacts - code -), the object mobility aspect (cf. [JUL8S]) and many others. The in-
tegration of development aspects can never be complete at language definition time. Ideally, one
would like to add totally new aspects even to the basic semantics of a language in the course of
its use. ‘Macro techniques’ on one hand, introducing new aspects without semantic support in the
language, and recoding of a compiler on the other hand represent the two extremes which both
seem to be unacceptable; the ‘ideal’ language/tool feature in this respect seems to be language
extendability on the basis of highlevel linguistic aids. This way, changes could be described to
the existing language tools (compiler etc.), and to existing other tools. New tools could easily

Advances and issues

describe their additions / requirements to the language and language tools. Both ‘classical’ and
object-oriented languages fail up to now in providing integration of a large number of develop-
ment aspects and allowing extension, i.e. inclusion of further development aspects after the lan-
guage is defined. CLU [LIS82] for example integrates the reliability aspect, and DC integrates the
performance aspect, but neither is complete or extensible. CENTAUR [BOR88] offers access to a
languages semantics at the level of the abstract syntax tree, providing compiletime and runtime
extensions in the way tools can interface with the compilation / runtime support. DODL defines a
toplevel object hierarchy which is exported to all tools and which is not modifiable by the appli-
cation programmer. Currently, we work on providing integration and extendability by allowing
the toplevel hierarchy to be modified by the system programmer. Ideally, we would like to offer
three classes of extensions: ‘horizontal extensions’ would denote adding new semanitc relation
classes when adding a new development aspect; ‘vertical extensions’ would allow to make sub-
classes of the toplevel hierarchy (defined by straighforward object-oriented techniques) part of
the toplevel hierarchy, thereby allowing generic domain knowledge to be exported to the pro-
gram development tools; ‘lateral extensions’ would modify existing and add new methods to ex-
isting toplevel object classes.

[ssue: which are the pathways towards integration and extendability; are the research fields ‘lan-
guage extendability’ and ‘formal semantics’ in a stage where integration and extendability in our
sense can be reached; are our three dimensions of extendability ‘spanning the space’ for extend-
able object-oriented systems?

The most notable aspect to integrate is the design aspect. In addition to the integration as de-
scribed above, the adaption of a widespectrum language approach [BAU8S2] - offering the same
semantical framework from early design to detailed implementation seems relevant. Although
object-oriented programming has proven to be of great benefit to the design aspect (cf. [BOOS§],

[COX88]), the lack of axplicit semiasitic differences between objects and the lack of integration of design
and implementation languages have nat teen resolved very well in the past.

3.1.5 Events and Rules

Asynchrony has been recognized as on one hand critical for parallelism and dynamics, on the
other hand harmful to secure programming. Longliving activities are driven by asynchony and by
conditions and constraints to a large extend, much more than traditional processes. A formal base
has to be established to properly describe all possible actions which may have to be carried out
off the track of normal threads. ‘Exception handling” facilities as restricted means for describing
reactions to a few types of exceptions (offered by DC, *MOD([COQ80], SR[AND82], and others),
seems to be insufficient. A formal base for (asynchronous) events and rules (constraints, condi-
tions), for coupling those descriptions with the normal flow of control - supporting secure pro-
gramming - has to be developed.

[ssue: how to get to a formal base for a flexible and secure handling of events and rules?

3.2 Environments and tools

Along with this chapter, we want to introduce the basics of the DOCASE coarse architecture as
shown in figure 2. The figure is annotated with the issues discussed in the chapter; the terms used

Advances and issues

standardized environment shell

/ shell interface
standardized protocol?
human
interaction
I broadspectrum approach?
extendabiliry?

; : | = : aspect sepafarion ?
funct- | WORKBENCHES lifecycle spanning?
icnal rool adaprion?
layer | MANIP- TARGET

ULATION SYSTEM

TOOLS
data
layer ; 5
common object approach?
lifecylce phases >
common methodology? environment distribution? reference architecture?

Figure 2: Coarse DOCASE architecture and issues
will be explained in the remainder.

3.2.1 Integration

As integration of tools is a principle goal of any software engineering environment, one could
expect to find sophisticated integration approaches to be used in state of the art environments. As
large software engineering environments will always have to be extended in their lifetime, ex-
tendability could be expected to be focussed on. Looking at the three ‘classical’ layers of soft-
ware engineering environments, one finds that the integration, as well as extendability, are still
problems which are largely unresolved (compare, e.g., [SCH84] to [WAS86]) . A principle problem
lies in the fact that environments try to integrate existing tools of different age produced by dif-
ferent groups or vendors; the tools are usually not extendable or flexible enough to be subordi-
nated to a new overall method or philosophy.

Advances and issues

—
won

a. The human interaction layer has in the past not been clearly separated from the functional
layer. 'Common look’ appearance of different tools of different sources has therefore hardly
been achieved. The decoupling of human interaction and functional layer has recently been
pushed with the upcoming workstation windowing system standards, most notably X-
Windows(SCH87]. These standards are however on the level of graphics primitives and not on
the level of a standardized software engineering layout philosophy and related screen arti-
facts (such as screen representations of active entities, classes/instances, messages, calls,
modules, statements etc.). Such a ‘software screen arrifact standard’ approach, together with
a standardized prorocol for the communication between tools and the human interaction
layer, could insure a high level of common look appearance for tools of different sources, but
for the moment is not in sight. Another, mostly complementary approach is that of mapping
generic ‘common look’ screen artifacts to the input of different tools and mapping their out-
put back again. This way, existing tools could remain largely unchanged. Recent efforts in
the direction of such a ‘mapping” approach are made in the INCAS project. The mapping
process is however difficult to achieve, as not only armifacts but philosophies and methods
have to be matched, a problem which has to be dealt with in the data layer (see below). DO-
CASE tries to mix the approaches partly, defining its ‘private’ software screen artifact stan-
dard and adding a limited mapping functionality (the mapping can remain limited due to the
fact that DOCASE uses a selfdefined language, DODL).

Issue: to what extend is the ‘softwae screen artifact standard’ and the ‘mapping’ approach
feasable; how else can ‘common look’ be achieved?

b. As most environments were built around existing, mostly inflexible tools, integration at the
functional layer has always been a difficult task. The recent advances of CASE tools [IEE8S]
brought up approaches in which a suite of tools, a toolser, was designed in a single project,
around a harmonized set of methods, i.e. with a common feel appearance in the functional
layer (of course this was a major step towards integration in the HI and data layers as well).
Several tooisets focussed on the early program development phases; the last output of the
toolset was sceletal code for standard programming languages (in this context, we want to
disregard 4GL languages because of their stll very restricted application domains). The idea
was to have the programmer fill out the skeletons, and the idea was also that using this tech-
nique one could use the - typically very elaborate - compilers, runtime systems, and debug-
gers of different target machines. However, in every environment in which the programming
language is still visible to the programmer (i.e., where he cannot stay within the semantics of
a higher notation throughout every phase of the lifecycle), this programming language re-
mains the center in the lifecylcle around which upstream activities (analysis, design etc.) and
downstream activities (testing, debugging, measurement etc.) are centered. The existing lan-
guage tools are usually inflexible and unextendable, and therefore a ‘common feel’ integra-
tion of upswream and downstream activities around their center, the programming language
with its tools, is unfeasable.

As discussed in 3.1.4, DODL tries to combine recent advances in widespectrum languages
with openness and extendability. As the language tools are accessable and extendable, tight
integration with both upstream and downstream activities seem feasable.

[ssue: have broadspectrum language approaches and extendable language approaches

Advances and issues

reached enough maturity to be used in a software engineering framework? Can they be ap-
plied to distributed languages?

c. Inthe dara layer, two basic approaches to integration are widely: #iscussed [FAL89}: the ‘com-

mon object’ approach forces tools to use a common object repository. This approach has
found much interest recently and has entered the standardization process with a proposal
called ATIS, it is however not properly feasable if older tools - not following the standard -
have to be included. A ‘mapping’ approach, analogous to that described for the human inter-
action layer, allows the integration of existing tools, but requires numerous data translation
functions for the mapping and lets the data repository centrally define only the structure of
the data, but not their semantics; if one tries to avoid a central data repository for the environ-
ment, data translation has to be inserted between any possibly connected tools.
Central repositories surely have a large number of advances, like databases in general have
for large applications. Standard databases, however, have long been recognized as insuffi-
cient for software engineering environments as mentioned [TSI88, PEN86]. The database model
has therefore evolved in the past from the classical relational model via entty-relationship
and entity-relationship-attribute models to the object model. The latter will surely stay the
preferred model in software engineering environments for the near term future. However,
‘vertical’ integration with the functional layer into ‘persistent active objects’ (see above), and
‘horizontal’ integration in the sense of hypertext search (in addition to query search) will take
some time to become mature. The different characteristics of software bases as opposed to
classical data bases (e.g., lower access rates to a higher number of objects) have led to special
considerations of ‘object software bases’ [ARA88].

Issue: which are the dara base approaches and models mature enough to build environments
on, which are the forthcoming ones, and how can we protect the investment in building func-
tional and human interface layers on top of changing database technology

3.2.2 Aspect separation

Distributed applications introduce a number of development aspects in the software engineering
process which are unknown in sequential, single node applications, such as object placement,
parallelism enhancement, and fault tolerance. Other aspects become much more relevant and/or
more difficult to deal with, such as administration support and performance optimization. The
large number of aspects. and the thread of an even aggravating software crisis, makes it ex-
tremely important to be able to deal with a single aspect at one time. This way, experts for differ-
ent aspects can work on a project, and complexity is reduced. At the same time, one would like
to deal with an aspect in different phases of the lifecycle, and do this in a ‘common look and
feel’ sense. This leads to the requirement of building a comprehensive workbench for every as-
pect, which each workbench spanning the lifecycle (to the extend the aspect spans it), and offer-
ing common (user-level) conceptual models, vocabulary and interaction concept (screen design).
The notion of workbenches as defined here is used in DOCASE.

Issue: how to find common principles, architectures, or even a formal ground for the process of
developing and integrating workbenches for software engineering environments.

Advances and issues

17

PR —

3.2.3 Environment distribution

Current standardization efforts in Europe (PCTE [GAL87]) and the US (CAIS [CAS87]) already
consider environment distribution. These efforts tend to standardize a ‘shell’ for environments,
consisting of basic elements of the human interface layer (e.g., X-Windows), the functional layer
(tool building tools), and the data layer (offering some framework according to the ‘common ob-
ject’ approach). We prefer the term ‘shell’ to the commonly used term ‘kemnel’ as we have a dif-
ferent view of an environment architecture (cf. fig. 2). The environment distribution in the stan-
dardized shells is restricted to data distribution as described in 2.3.2. In addition, they do not
consider the clear distinction of node types as proposed in 2.3.2. (to our knowledge, only DE-
SIGN and DOCASE reflect such a distinction in the conceprual framework of the environment).
A number of environments are built on top of standardized shells (e.g., Eclipse [CAA87]), but
those are related closely to the specific standard they choose.

Issue: can the different types of environment distribution and the distinction of node types be
elaborated into a reference architecture for distributed software engineering environments, and
can standardized environment shells be commonly interfaced to?

3.2.4 Tool adaption

It seems as if a large number of individual problems have to be solved in order to find new and
enhanced concepts for tools suitable for distributed application development. The major areas to
consider have already been described in 2.3.1. We cannot go into detail here for the specific ar-
eas.

This seemingly unstructured field of ‘tools suited for distributed application developments’
might look different if one came to a common understanding of the distributed application devel-
opment process, and from there to a distributed application engineering methodology. Tools ad-
hering to this process might then be more easily integrated and their problems might be under-
stood and solved in a broader context. The current lack of a common methodology - even of a
common vocabulary and paradigms - for many fields of software engineering has made this field
of computer science too much an ‘art’ instead of an ‘engineering process’ or even a science.

[ssue: How big and of what kind is the influence of distributed application development on the
major tool areas (development aspects); is there a path towards a commonly agreed upon meth-
odology for distributed application development; can we help to enforce its development?

4 Summary

We have looked at the mutual influences and alternating effects of distributed application pro-
gramming on one hand and distributed programming languages, object-oriented techniques, and
software engineering on the other hand. A considerable number of open issues has been raised,
many of which are adressed in the DOCASE project and in the various other projects presented
at the workshop. We would like to see a common understanding about the major issues, and
about approaches and steps for resolving them.

Summary

18

5 References

[ALM85]

[AND83]

[AND82]

[ARAB7]

[BAUS2)

[BENS7]

[BIR84]

[BLASS)

[BLA87]

[BOOSS)

[BORSS]

[BRI78)

[CAA87]

G. Almes, A. Black, E. Lazowska, J. Noe
The Eden System: A Technical Review
IEEE Trans. on Software Engineering, Jan. 1985

Andrews, G.R., Schneider, F.B.
Concepts and Notations for Concurrent Programming
Computing Surveys, Vol. 15, No. 1, March 1983, pp. 3 - 43

Andrews, R.A.:
The Distributed Programming Language SR - Mechanisms, Design, and Implementation
Siftware - Practice and Experience, Vol. 12, 1982, pp. 718-753

Arapis, C., Kappel, G.
An Object Software Base :
in: Tsichntzis, D.: Active Object Environments, University of Geneva, 6/1988, pp. 32 - 50

Bauer, F.L.
From specifications to machine code: program construction through formal reasoning
Proc. 6th Intl. Conf. SW Engineering, Tokyo 1982, pp. 84-91

Bennett, J.K.
The Design and Implementation of Distributed Smalltalk
OOPSLA '87 Proceedings, ACM 1987

Birrell, A.D., Nelson, B.J.
Implementing Remote Procedure Calls
ACM Transactions on Computer Systems, Feb. 1984

Black, A., Hutchinson, N., Jul, E., Levy, H.
Object Structure in the Emerald System
OOPSLA '86 Proceedings, ACM 1986

Black, A., Hutchinson, N., Jul, E., Levy, H., Carter, L.
Distribution and Abstract Types in Emerald
IEEE Trans. on Software Engineering, Jan. 1987

Booch, G.
Object Criented Development
IEEE Trans. on Software Engineering, Feb. 1986

Borras, P., Clément, D.

CENTAUR: the system

ACM SIGSOFT/SIGPLAN conf. Practical SW Engineering Environments, Boston, MA,
November 1988, pp. 14 - 24

Brinch Hansen, P.

Distributed Processes: A Concurrent Programming Concept

CACM, Vol 21, Na. 11, 1978, pp. 934 - 941

Cartwell, J., Alderson, A.
The Eclipse two-tier database interface
Proc. 1st Europ. SW Engineering Conf., Strasbourg, F, 9/87, (Springer), pp. 129-137

References

19

[CAL87] Calton, P., Jerre, D.N.
Design and Implementation of Nested Transactions in EDEN
Proc. 6th Symp. on Reliability in Distributed Software and Database Systems, 1987

[CC080] Cook, R.P.:

*MQD - A Language for Distributed Programming

IEEE Trans. Software Engineering, Vol. 6, No. 6, 1980, pp. 563-571
[COX86] Cox, B.J.

Object Oriented Programming

Addison-Wesley 1986
(CUL87] McCullough, P.L

Transparent Forwarding: First Steps
QOOPSLA '87 Proceedings, ACM 1387

[DEC86] Decouchant, D.
Design of a Distributed Object Manager for the Smalitalk-80 System
OOPSLA '86 Procesdings, ACM 1986
[EBEB88] Eberle, H., Geihs, K., Schill, A., Schoener, H., Scmutz, H.
Generic Support for Distributed Processing in Heterogeneous Networks
HECTOR Proceedings, Vol. 2, Springer 1988
(ELR82] Elrad, T., Francez, N.
Decomposition of Distributed Programs into Communication Closed Layers
Science of Computer Programming, VOL. 2, Na. 2, 1982, pp. 155-173
(ERI82] Ericson, L..
DPL-82: A Language for Distributed Pracessing
Prof. IEEE 3rd Intl. Conf Distr. Comp. Systems, Ft. Lauderdale, FL, 10/1982, pp. 526-531
[FAG88] Fagerstrom., J.
Design and Test of Distributed Applications
Research Report, No. LiTH-IDA-A-88-22, University of Linkdping, Sweden
[FAL89] Failk H.
Software vendors serve up varied palette for CASE users
Computer Design, Jan. 1, 1989, pp. 70 - 80

(FEL79] Feldmann, J.A.
High Level Programming for Distributed Computing
CACM Val. 22 No. 6, 1979, pp. 353-368
[FOR86] Forman, I.R.
On the Design of Large Distributed Systems
Proc. 1st Intl. Conf. Computer Languages, Miami, Oct. 1986
[FRA8S] Francez, N., Hailpern, B.
Script: A Communication Abstraction Mechanism
Operating Systems Review, No. 2., Apnl 1985, pp. 53-67
(GAL87] Gallo, F.
The PCTE initiative: toward a European approach to software engineering
Proc. CRAI warkshop on Software Factories & Ada, Capri, 5/1986 (Springer), pp. 16-29

References

[IEE88] Special Issue on CASE

IEEE Software, March 1988
[JUL88] Jul, E., Levy, H., Hutchinson, N., Black, A.

Fine-Grained Mobility in the Emerald System

ACM Transactions on Computer Systems, Vol. 6, No. 1, Feb. 1988, pp. 109-133
[KES81] Kessels, J.L.W.

Soma: A Programming Construct for Distributed Processing

IEEE Trans. on Software Engineering, Vol. 7, No.5, 1981, pp. 502 - 509
[KRA83] Kramer, J., et al.

CONIC: an integrated approach to distributed computer control systems

IEEE PRQOC., Vol. 130, No. 1, January 1983
[LEB82] LeBlanc, R.J., Maccabe, A.B.

The Design of a Programming Language Based on Connectivity Networks

Proc. IEEE 3rd Intl. Conf. Dist. Comp. Syst., Ft. Lauderdale, FL. 10/1982, pp. 532-541
[LIS82] Liskov, B.

On Linguistic Support for Distrivuted Programs

IEEE Trans. on Software Engineering, Vol. 8, No. 3, May 1982
[MUH88] Mahlhauser, M.

Software Engineering for Distributed Applications: The DESIGN project

Proc. IEEE 10th Intl. Conf. on Software Engineering, Singapore, April 1988
[MSH88] Mduhlhduser, M., Schill, A., Heuser, L.

Software Engineering for Distributed Applications: An Object-Oriented Approach

Proc. Intl. Workshop SW Engineering & Its Applications, Toulouse, F, Dec. 1988, pp. 264-284
[PEN8SE] Penedo, M.

Prototyping a Project Master Data Base for Software Engineering Environments

Proc. ACM Conf. Practical SW Eng. Environments, Palo Alto, CA, Dec. 1986, pp.1-34
[REN82] Rentsch, T.:

Object-Criented Programming

ACM SIGPLAN Notices, vol. 17, no. 9, Sept. 1982
[RUM87] Rumbaugh, J.:

Relations as Semantic Constructs in an Object-Oriented Language

Proc. OOPSLA 87 in SIGPLAN Notices, Vol. 22, No. 12, Dec. 87, pp. 466-481
[SCH84] Scheffer, P.

Evolution towards a comprehensive software development environment

IEEE Proc. Compcon, Fall 1984, Arington, Virginia, pp. 306-309
[SCHB84] Scheiffler, R., Gettys, J.

The X Window System

ACM Trans. on Graphics, Vol. 5 No. 2, April 1987, pp. 79-108
[STAB8] Staroste, R., Schmutz, H., Wasmund, M., Schill, A., Stoll, W.

A Portability Environment for Communication Software

. HECTOR Proceedings, Vol. 2, Springer 1988

[TAN8B8] Tanenbaum, A.S., van Renesse, R.
References

A Critique of the Remote Procedure Call Paradigm

Proc. Research into Networks and Dist. Applications, Wien, Aprl 1988. North Holland
[TSI88] Tsichritzis, D., Nierstrasz, O.:

Fitting Round Objects Into Square Databases

in: Tsichntzis, D.: Active Object Environments, University of Geneva, 6/1988, pp. 202-218
[WAS86] Wasseman, A., Pircher, P.

A Graphical, Extensible Integrated Environment for Software Development

Proc. ACM Conf. Practical SW Eng. Environments, Palo Alto, CA, Dec. 1986, pp.131-141
[WEGS87] Wegner, P.

Dimensions of Object-Based Language Design

OOPSLA ‘87 Proceedings, ACM 1987
[YOK87] Yokote, Y., Tokaro, M.

Experience and Evolution of Concurrent Smalltaik

QOPSLA '87 Proceedings, ACM 1987

References

22

