‘Intelligenz’ versus Hypermedia in Lehrer-/Lernerumgebungen

Max Mühlhäuser

Universität Kaiserslautern, FB Informatik, AG Telematik
Erwin-Schrödinger-Str., D-6750 Kaiserslautern

1 Überblick

2 Historische Sicht

Die Forschung auf dem Gebiet der computergestützten Ausbildung ist geprägt durch Wogen aus Hoffnung und Ernüchterung.

Die erste Hoffnungswoge des "programmierten Unterrichtes" ebte ab mit der ernüchternden Erkenntnis, daß sich eine diversifizierte Lernerpopulation nur schwer in die Zwangsjacke imperativen Programmierens stecken läßt. Neues Hoffnung wird seit etlichen Jahren durch die intensive KI-Forschung genährt, die die Techniken zur Erstellung intelligenter tutorieller Systeme oder intelligenter Lernsy-
steme (ILS) liefern soll [SEE88]. Eine zweite Ernüchterungswelle ist jedoch zu befürchten: zum einen, weil eine umfassende Modellierung der Lernerpopulation - insbesondere jeder denkbaren Mißkonzeption - bisher nur sehr schwer möglich erscheint, zum anderen und insbesondere, weil bisherige Lernermodelle, Lehrstrategien und sonstige pädagogisch/didaktischen Elemente so gut wie nicht in generischer und wiederverwendbarer Form rechnerverarbeitbar dargestellt wurden und sich somit der erhebliche Entwicklungsaufwand i.a. nicht durch Wiederverwendung kompensieren läßt.

3 Ansatz: Hyperinformation

Nestor versucht, dem geschilderten Dilemma durch eine geeignete Kombination der beiden letztgenannten ‘Wogen’, ILS und Hypermedia, zu begegnen. Dabei wird das Konzept ‘Hypermedia’ so erweitert, daß pädagogisch-/didaktische Konzepte a) flexibel mit Lerninhalten kombinierbar sind und b) generalisiert (wiederverwendbar) formal dargestellt werden können. Drei Anstrengungen - und als Resultat drei aufeinander abgestimmte Komponenten - sind hierzu notwendig:

1. NICEnets: NICEnets sind eine Erweiterung von Hypermedia um objekt-orientiertes Typkonzept, Dynamik, mehrstellige Links, bessere Medien-Integration und Präsentationsaspekte. Erst dadurch können Lerninhalte (‘Informationen’, Wissensdomänen) adäquat computergestützt dargestellt werden. NICEnet-Elemente (Knoten, Links, Abstraktionen) bestehen optional aus:

 a. Struktur: fest vorgegebener hypermedia-artiger Information,

 b. Verhalten: objekt-orientiert strukturiertem Code (für Simulationen, Evaluationen etc.),
3. **PreScript**: PreScripts stellen ein generisches Navigationskonzept für NICEnets dar. Sie eignen sich zur rechnergestützten Beschreibung von Lehrstrategien [REI83] und (bedingt, s.u.) Lernermöglichkeiten, werden aber auch z.B. zur Beschreibung des Zusammenwirkens von Werkzeugen im Autorenprozeß (Werkzeugsatz als NICEnet dargestellt) verwendet. PreScripts werden im nächsten Abschnitt noch näher beschrieben.

4. **PreScripts**

PreScripts bestehen aus einem Konstruktions- und einem Navigationsteil.

Der **Navigationsteil** definiert für jedes im Konstruktions teil beschriebene Web die zulässigen Navigations-Pfade. Die Beschreibung erfolgt ähnlich den Übergangstafeln erweiterter endlicher Automaten; Bedingungen und Aktionen können im objekt-orientierten Sinne flexibel programmiert bzw. importiert werden, die Bedingungs-Auswertung insgesamt folgt der regelbasierten Programmierung.
Eine vollständige Hyperinformation (d.h. ein computergestützter Kurs oder ein Lernpaket) entsteht durch die Kombination (mapping) eines NICEnets mit einem PreScript (sowie ggf. einer InterfaceDefinition, was hier vernachlässigt werden soll). Dabei werden die generischen Metaknoten und Links aus den Webs der tiefsten Hierarchiestufe des PreScripts auf ein konkretes NICEnet (eine Wissensdomäne) abgebildet. Somit kommen ‘Information’ und ‘Navigation’ zusammen, im Kontext der Nestor-Ausführungsunterstützung entsteht so das Lernsystem.

Wie äußern sich nun ‘Wiederverwendbarkeit’, ‘Flexibilität’ sowie ‘Integration von Lehrstrategien und Lernermodellen mit hypermedia-strukturierten Wissensdomänen’?

Die Wiederverwendbarkeit liegt darin begründet, daß PreScripts nur die unbedingt notwendigen Einschränkungen über die Familie von NICEnets machen, für die sie gelten. Ein PreScript für die Lehrstrategie ‘progressive deepening’ (s. [RE83]) konstruiert z.B. beliebige baumartige Sequenzen von Metaknoten des Typs ‘topic’ unterschiedlich tiefen Detaillierungsgrades, es ist für alle NICEnets dieser Struktur (und das sind genau all diejenigen, auf die ‘progressive deepening’ anwendbar ist) wiederverwendbar. Darüberhinaus kann der Konstruktionsteil des PreScripts auch verwendet werden, um neue oder existierende NICEnets für eine Wissensdomäne so zu strukturieren, daß die entsprechende Strategie darauf angewendet werden kann.

Lehrstrategien und Lernermodelle schlagen sich also in PreScripts nieder und werden dort einmalig zusammen mit der Beschreibung der NICEnet-Familie, für die sie anwendbar sind, festgehalten. Die rechnerverarbeitbare Beschreibung der Navigationsregeln

Die generische Handhabung von Lernermodellen ist natürlich überall dort beschränkt, wo domänenspezifisches Wissen relevant ist. Das scheint beim Blick auf heutige ILS der überwiegende Teil. Jedoch entstehen erstens immer mehr domänenunabhängige (dafür häufig Lehrstrategieabhängige) Lernermodelle (man denke an die Analyse der Navigationshistorie in einem PreScript); zweitens ist zumindest die Lehrstrategie-bezogene Bearbeitung des Lernverhaltens (‘function’, s. [SEL88]) domänenunabhängig; und drittens wird durch die Wiederverwendung eines NICEnet in mehreren Strategien auch die domänenabhängige Modellierung in gewissem Sinne wiederverwendbar.

5 Ausblick

6 Literatur

[REI83] Reigeluth, C.M. (Ed.): Instructional design theories and models: An overview of their current status. Erlbaum Ass., Hillsdale, NJ, USA