
° L o G

Max Miihlh~user, Wolfgang Gerteis, and Lutz Heuser

D O ¢ A S E : A M E T H O D I C
A P P R O A C H T O D I S T R I B U T E D

P R O G R A M M I N G

istributed object-oriented programming
languages have proved to be superior to
other known approaches for the
development of complex distributed
applications. Most of these languages
support location-independent method
invocation and object migration.
Together with the fine granularity of
objects, these features allow distribution-
transparent modeling and programming.
However, large object-oriented applica-
tions tend to exhibit huge numbers of

objects and intertwine several operational software aspects
for which a more methodic approach is required. The
DOCASE project (Distribution and Objects in CASE) was
established to identify fundamental elements of such a
method approach.

There is an increasing demand for complex multiparty
distributed applications, such as cooperative office
workflow systems. A predominant problem in the develop-
ment of these applications is the request for distribution
abstraction, which comprises "natural" distribution
aspects such as locality, remote invocation, or availability.
In the past, process-oriented or RPC-based approaches led
to client/server (C/S) computing. Thereby, the boundaries
between client and server processes had to be determined
early in the software life cycle. However, solutions to many
distribution problems have to go beyond C/S computing
to meet their requirements [17].

Provided that some basic design rules are observed, the
object-oriented approach leads to distributed applications
consisting of large numbers of"small" objects. Such "fine-
grained" applications can be distributed over the target
distributed system at installation time (e.g., with the goal

to balance processor load or to
minimize internode communica-
tion). Thereby, local and remote
method calls are absolutely equivalent
on the syntactic level. In order to
determine the (initial) mapping of
objects to network nodes at installa-
tion time, distributed object-oriented
systems usually offer special language
elements [12] or even dedicated "con-
figuration languages" [15].

Moreover, most distributed object-
oriented programming languages,
such as Emerald [2], DOWL [1], Guide
[5], and COOL+ + [13], allow migra-
tion of objects at run time (i.e., sen-
ding them to another node). Many
such languages allow migration of
objects even during their invocation.

To summarize, distributed object-
oriented programming languages
support distribution-transparent
programming extremely well. Addi-
tionally, they exhibit the known
advantages of the object-oriented
approach in general, such as data
encapsulation, fine-grained modu-
larity, reusability, and extendability.

There are, however, major dif-
ficulties in using current distributed
object-oriented technology. The
DOCASE project tried to address
these. Three particular problems and
the solutions developed in DOCASE
are discussed in this article: common
representation of design artifacts and
their implementation; modulariza-
tion of algorithms by separating
dynamic distribution aspects from
application algorithms; and guidance
throughout the design process. We
will present the hybrid language
DODL, the superimposition language
TSL, and DOCASE design assistant
with its design method description
language. These three approaches
together provide a unique level of
design and implementation support
for complex distributed applications.

¢OHMUlliCATIONll OF T i l l A|M September 1993/Vol.36, No.9 127

They have a language-based approach
in common since we are convinced
that language support is crucial to
provide extensive tool support.

Accompanying Example
To guide the user through the vari-
ous concepts of DOCASE we provide
a sample distributed appli.cation. The
problem to be solved is an office ap-
plication t[~at allows processing of
travel expense claims. The various
steps to be supported are: An em-
ployee fills, in an electronic travel
claim sheet; his or her cost center
manager signs it; a clerk checks if it
conforms I:o all rules; accounting
sends out a payment; and[finally the
travel claim gets filed. Employees are
expected to work on desktops while
the cost center manager works on a
department: server; the clerk who
checks the :rules and accounting use
an office server; and filing is done on
a database server.

The application should coordinate
the workflow throughoul: a distrib-
uted system (i.e., the enterprise net-
work all the involved employees are
working on). All these steps should
be affected only by the availability of
the node of the actual perfbrmer, but
not by those used by the other em-
ployees.

Hybrid Language
DOCASE attempts to enhance the
distributed object-oriented approach
with better support for design and
structured programming. [n particu-
lar, the decision was taken to inte-
grate design and implementation
into a seamless phase, supported by a
single hybrid language, called DODL
(DOCASE Design Language). The
inherent advantage o f using a single
language is the avoidance o f an arti-
ficial barrier between the two phases
which would[mark a virtual "end of
design" and "beginning of imple-
mentation" and would make it hard
to feed implementation-level
changes back to design. A single lan-
guage can, in addition to this, sup-
port attempts to shorten the software
life cycle, to introduce concurrent
engineering, and to apply iterative
rapid prototyping or spiral software
development. The risk, of course, is
that neither of the two phases will be

E T // 0 0 @''~
D 0 L 0

supported sufficiently or that clearly
consecutive and distinct steps of soft-
ware development will be mangled.

A particular strength of DODL lies
in its dual graphical and textual nota-
tion: each language element has, in
addition to its textual syntax, a
graphical depiction associated with it.
DODL is a design language due to its
graphics aspects, structuring sup-
port, support for incomplete and it-
eratively refined design, and anima-
tion of incomplete designs. DODL is
also an implementation language in
that it includes a full-fledged compu-
tational model, a broad range of
statements, all elements of other dis-
tributed object-oriented languages,
and a complete configuration lan-
guage.

Rather than present the language
in-depth, we will concentrate on its
key concept, namely, object categories,
and explain them by using their
graphical notations.

DODL Object Categories
The credo of the object-oriented
community, "Everything is an ob-
ject," has become common knowl-
edge. This phrase means that "the
object" is the rich yet singular syntac-
tic and semantic element of object-
oriented languages. It is rich because
of its many facets such as data ab-
straction, typing, inheritance, and
message-based method invocation. It
is singular since "traditional" distinc-
tions like "functions and data," "cli-
ent and server," "active and passive,"
"information entity and information-
processing entity," "procedure call,
information flow, and control flow"
vanish in the object-oriented context.

Instead, the software engineers
are responsible for introducing such
distinctions, for example, by provid-
ing different top-level object types.
But then, these distinctions exist
mainly in the mental model o f the
software engineers, exhibited
through the names given to the dif-
ferent object types. Design and pro-
gramming tools will not be able to dis-
tinguish and check different kinds of
objects or actions other than by
checking signatures (type, object,
and method identifiers, call parame-
ters).

DODL type categories provide pre-

defined semantics for different no-
tions o f application types captured by
various language constructs. This
means, for instance, that

• Category names are keywords of
the language.
• Category-specific characteristics
are collected in specific sections of a
type description.
• Category-specific actions of objects
are captured in special statements of
the language.
• Other tools such as the visual de-
sign/programming tool [14] are
aware of the characteristics of differ-
ent type categories, too.

Of course, the crux in all this is the
"right" choice o f type categories,
guided by the question: which are
the key categories o f a "typical" dis-
tributed application, as seen by a
software engineer? Based on our sev-
eral years of experience with the de-
velopment of complex distributed
applications [4, I0, 16], and drawing
from the experience of many senior
software engineers, we have chosen
the type categories described later.

In almost all cases, a sketch of a
complex (procedural or object-
oriented) software system consists of
"major" software modules (pro-
cesses, clients/servers, subsystems), o f
relations between them (denoting
communication, control flow), and of
masses of "little objects" (informa-
tion, events) exchanged between the
"major" modules along the relations.
This intuitive understanding leads to
the three key and most crucial type
categories, called configured type, gen-
erated type, and relation type. In addi-
tion, locality is the key distribution
aspect reflected by the category logi-
cal node.

Configured Type
Configured types are used to design the
basic software architecture o f an
application, which we call "applica-
tion configuration." Intuitively, con-
figured objects (i.e., instances o f
types belonging to the category con-
figured type) are "long-living" or "sta-
ble"; adding or removing one o f
them is a major act o f "configuration
change." While other objects refer to
one another via references held in
instance variables, configured objects

~ 8 September 1993/Vol.36, No.gcOIdMUNICATIION|OIRTNIIA©M

are explicitly interconnected via spe-
cial references called connections.
Thus, configured objects and the
connections between them form a
skeleton of the application.

In Figure 1 the skeleton of the
travel expense application is shown.
Each organizational unit is repre-
sented by a configured type. The
order of execution implies the
knowledge about other configured
types through connections.

Subcategories of configured type. In
order to provide for better hierarchi-
cal structuring of application config-
urations, the (semantically poor) ob-
ject-oriented aggregation concept
was enhanced to that of subsystems;
they denote a set of configured ob-
jects, their relations, and manage-
ment. Active types schedule their own
threads and may exhibit characteris-
tics of actors or agents if designed
accordingly. Environment agents cope
with the popular legacy problem:
they provide object-oriented "wrap-
pers" around existing software pack-
ages with which one would typically
have to interface from a complex in-
tegrated application.

Figure 2 refines the categorization
(see Figure 6 for the subcategories).
Each employee works concurrently
to others, so they are modeled as ac-
tive types. "Accounting" is an organi-
zational unit that represents a group
of clerks and encapsulates to whom
the action actually gets delegated.
Therefore, it is modeled as a subsys-
tem.

Generated Type
In contrast to configured objects,
generated objects are created and ma-
nipulated (mainly by configured ob-
jects) without affecting the configu-
ration. Intuitively, generated objects
are created in masses and may have a
rather short lifetime. Mails, route-
slips, messages might be examples of
these.

The travel claim is a generated
type because its instances are gener-
ated by a configured-object "initia-
tor" and manipulated by other con-
figured objects (see Figure 3).
Furthermore, even a travel expense
system without any travel claims (i.e.,
an empty system), is valid whereas a
missing configured object corrupts

0
o

° t o g

initiator CC_mgr c l e r k accounting clerk

has connection to

initiator CC_mgr c l e r k accounting clerk

has connection to (configured type or any sub-category)

L~__J
initiator ~ CC_mgr ~ clerk ~accounting~-''~ clerk

) has connection to ~ passes to

the execution of the travel expense
process.

Relation Type
Object-oriented languages usually
offer nothing but instance variables
for modeling all kinds of relation-
ships among objects and nothing but
method calls for modeling all kinds
of "flows" along these relationships
(control flow, synchronization, infor-
mation flow, activation). Complex
relationships such as time-spanning
multiparty interaction patterns [20]
"vanish" in the program code: there
is no central place where the relation
is specified and maintained and
where its state is kept; there are no
means for typing such relationships.
In DODL, relation types are used to
specify complex semantic relation-
ships. Relations are typically estab-
lished between configured objects, and
they may specify details of the ex-
change of generated objects.

Subcategories of relation type. Inter-
action relations are used to model
complex multiparty interaction pat-
terns [20]. The collocation category is
used to relate objects which may oc-
casionally migrate onto a single node
during periods of intensive commu-
nication [19].

Long-living, global control flows
or "workflows" can be modeled using
the cooperation category, where sev-
eral configured objects are related via
a global control flow. A cooperation

Figure 1. Application skeleton

Figure 2. Application skeleton
(refined)

Figure 3. In format ion f low

is used when none of the configured
objects can provide the full function-
ality but each provides part of it as a
partner of the cooperation. The
global control flow coordinates the
partners by defining the order of
execution and by providing the com-
mon context.

The design of the sample applica-
tion changes when a cooperation
type is introduced (see Figure 4). In-
stead of peer-to-pee:r connections,
the configured types are enrolled as
partners of the cooperation, not
knowing who else belongs to it (un-
less this information should be visi-
ble). The travel claim is part of the
common context and therefore ref-
erenced by the cooperation object.
For each travel claim, a global control
flow is launched which is encapsu-
lated in an instance o:[the travel_ex-
pense_cooperation.

Logical Node
This category provides the interface
to the physical configuration. At de-
sign/programming time, the "appli-
cation configuration" may refer to
"logical nodes," see Figure 5. By
mapping logical nodes onto real ones

C O N M U m U C m T | O N m O P V H n A C M S e p t e m b e r 1993/Vo|-36, No.9 1 2 9

" 0" %" ~ o 0

D 0 L 0

initiator

travel_expense_cooperation

CC_mgro o o o clerk " - , , , accounting " " - . .

. . . . ~ is enrolled as partner in knows

clerk

Figure 4. l~avel expense cooper-
ation

Figure S. Object placement

Figure i . Graphical depiction of
DODL categories

at installation time, major aspects of
the physical configuration are deter-
mined. Logical nodes]'effect the
granularity of execution (i.e., each
one is realized as a single program or
workspace executed while the dis-
tributed application is running).

For the sake of space, other cate-
gories such as DOCASE type, role type,
and event type are not addressed here.
For further information we refer to
[8] and [9]. Figure 6 shows the icons
associated with each of the DODL
categories. Graphical design/
programming of a DODL applica-
tion can start by picking, instantiat-
ing, customizing, and interrelating
such categories in a way sirailar to the
use of WYSIWYG drawing packages.

Concurrency M o d e l o f IDODL
DOCASE supports a thread-based
concurrency model which is divided
into three levels, each of which can
be developed independently.
Threads are treated as components
of logical nodes, active types, and
cooperation,~. Synchronization is
done at the level of objects, i.e., ob-
jects are single threaded. Providing
synchronization at a finer granular-
ity, i.e., methods [6, 7], is desirable
but beyond the current scope of the
DOCASE project.

-Figure 7 illustrates the concur-
rency model by excerpting concur-
rent objects (active objects and coop-
erations) from the example. Each
object is located on exactly one logi-

initiator CCmgr clerk accounting clerk

"~ "~ ""4 P" ~" @ @ @ @
. ~ is mapped onto

DOCASE
type

configured j /L . . #11~ J active type
type

~ subsystem

environment
generated agent

type

I ~ I event type

role type

J
\ j]

relation type

logical node +

collocation

cooperation

interaction

cal node which itself is executed
within an operating system (OS) pro-
cess. Within each OS process, threads
are running, each belonging to an
object of one of the preceding cate-
gories. Parallelism is inherently given
by the underlying distributed com-
puter network.

Further Design and
Implementation-Level Support
For further design-level support,
DODL incorporates, as design aids,
several syntactic means to deal with
incompleteness of the system under
development. The following list of
concepts is incorporated into a draft

1 1 1 1 0 September 1993/Vol.36, No.9 ¢OIWNILIN|¢AllONII OP T N I ,~¢N

design of the travel expense coopera-
tion (see Figure 8; keywords are capi-
talized).

• The keyword TBD may be used
instead of a type or variable identi-
fier, allowing for a declarative or
structural description of the actual or
referenced object; this is particularly
important since many object-
oriented design approaches deter-
mine the instances of an application
first and care about types only then.
• For program sections yet to be de-
fined, designers can use the UNDE-
FINED keyword to make an under-
specified DODL program syntacti-
cally correct (for the effect see
below).
• UNDEF is a valid value for all ob-
ject references and for simple types
and serves as a default value. This
helps to trace forgotten initializa-
tions, for example.
• UNDEF_.BEGIN and UNDEF_END
embrace incomplete or unknown
parts of an algorithm which are se-
mantically checked as far as possible

O
0 H

@ OLOG

but for which code cannot be gener-
ated.

The handling of these constructs is
controlled by options of the DODL
compiler. It ranges from ignoring
them in early design phases, via
semi-automatic interactive resolu-
tion, to considering all of them as
errors in late implementation phases.
In particular, the DODL visual pro-
gramming tool can cope with "un-
derspecified" programs that make
heavy use of the preceding state-
ments.

S u p e r i m p o s i t i o n
The traveLexpense_cooperation is
further refined in Figure 9. Each
step is executed by an object; coordi-
nation is provided by the global con-
trol f low named exec__tec. We assume
that each performing object is lo-
cated on the node of the person in
charge of performing the corre-
sponding step. Taking into account
this underlying physical configura-
tion and assuming the cooperation is

executed on the workstation of the
person initiating the cooperation, the
following distribution scenario takes
place: The traveLclaim object being
local to the cooperation results in a
large number o f remote method in-
vocations during execution, i.e.,
every time the traveLclaim is ac-
cessed or the global control flow ad-
vances to the next step. This means
internode communication is signifi-
cant. Additionally, if the network is
not very reliable these steps risk fail-
ure. To overcome these shortcom-
ings, the designer has to increase lo-
cality by dynamically migrating the
cooperation and its associated
travel_claim to the objects perform-
ing individual steps.

Considerations like these distribu-
tion aspects are called operational as-
pects in DOCASE, since they do not
change the functionality of the coop-
eration. Other such operational as-

Figure 1. DODL c o n c u r r e n c y model

Cooperations with global control flows
.,, ~-,~ 4;,, ~.

w.ththreads

, / t" I

1

I I I" I
, i ," i

~ Logicalnodes ~ ~ mapped onto OS processes

~ Parallelism ~ ~

.... • I~ is enrolled as partner in I~ is mapped onto 3 thread _- is running on

COMMUNICATIONS Oil THI ACM September 1993/Vo1,36, No.9 1 3 9

0 0 L 0

COOPFRATION t rave l_expense_coopera t ion

DECLARATIONS

t~avel_claim:

PARTNERS

i: initiator;

mgr: cc_mgr;

ctr: clerk;

a: accounting;

t: clerk;

TBD ; ! The type of the travel claim is yet unknown

! Partners are the objects which perform steps of t rave l_expense

STATES

U N D E F I N E D • ! It is not yet def ined if a set of pre-def ined states has to exist

GLOBAL_CONTROL FLQW exec_tec

BEGIN

ME.travel c l a im := UNDEF ;

! Ini t ial izat ion is not yet def ined.

ME.t ravel_c la im := ME.i.f i l l_in (U N D E F I N E D) ;

! The parameter list of 'f i l l_in' is not yet def ined

UNDEFBEGIN

UNDEF_ END

END

END_COOPERATION

rest of the g!obal control f low is not yet def ined

I ~ traw~l_expense cooperation
] exec_tec]

] t r a v e l _ c l a i m]

initiator CC_mgr clerk accounting clerk

. I~ global control flow - - - - > is enrolled in ~ list of operation calls

' ~ ~ DODL depiction of an operation to be provided (here: by a cooperation partner)

Figure 8. I n c o m p l e t e n e s s in
DODL

F igure S. Travel e x p e n s e cooper -
at ion: g l o b a l c o n t r o l f l o w

pects include security, robustness
(e.g., checkpoint/recovery), and ac-
counting.

An easy solution to the preceding
problem is the inclusion of migration
statements before each step in the
global control flow. Figure 10 shows

the corresponding piece of DODL
code. The reader might ask why the
run-time system cannot take care of
this optimization aspect. Indeed, it
could. However, decisions about
migration would be made using heu-
ristics based on a posteriori knowl-

132 September 1993/Vol.36, No.9 C¢IMlUUNICAI'IOMSOIFTI[411IAClM

edge. Therefore, a system would
have to gather communication be-
havior first, which in our example
would probably lead to the wrong
decision (i.e., migration after being
used by the performing objects).
Migration statements, however, allow
explicit incorporation of a priori ap-
plication knowledge. Obviously, ap-
plication-oriented distribution as-
pects at an object level differ from
system-oriented distribution aspects
at an OS process level, for example,
load balancing.

R e q u i r e m e n t s
In the preceding example, the opera-
tional aspect interlaces the basic algo-
rithm. For larger and more realistic
examples this is highly undesirable.

~ H o ~ 0 D ~
O L o G

Common approaches to structured
programming and modularization of
software do not provide means to
separate algorithms which have to be
interlaced at run time. Therefore,
even an object-oriented approach to
complex applications with several
operational aspects will lead to spa-
ghetti code, turning maintenance of
an operational aspect (e.g., moving to
a new distribution policy) into a
nightmare. In order to better main-
tain, extend, and reuse such opera-
tional algorithms, they should be iso-
lated at both design and
implementation time.

In DOCASE, we have elaborated
the little-known approach of superim-
position [11] in order to resolve this
problem. The principle idea is to

layer different algorithms and to
allow "higher-layer" algorithms
(here: operational ones) to superim-
pose so-called basic algorithms. The
major problem stems from the fact
that superimposing algorithms de-
pend on the context in which their
statements will be executed, making
the isolation difficult. This means
that for the description of a superim-
posing algorithm, means have to be
provided for "talking" about charac-
teristics of the superimposed basic
algorithm.

Apart from modularity, a big ad-
vantage can be achieved if superim-

F i g u r e 10. Travel e x p e n s e c o o p -
e r a t i o n : m i g r a t i o n

COOPERATION

DECLARATIONS

travel claim:

PARTNERS

i: initiator;

mgr: cc_mgr;

ctr: clerk;

a: accounting;

t: clerk;

t ravel_expense_cooperat ion

f rom_AX4234

! Partners are the objects which perform steps of travel_expense

GLOBAL_CONTROLFLOW exec_tec
migration statement interlaced

BEGIN < with the basic algorithm

MOVE ME TO ME. i , i / pteerPo~fteh ~ ~ypPaetration.~)

ME.travel_claim := ME.i.fill_in () ; . ~ r

M O V E M E T O M E , m g r ;

ME.travel_claim := ME.mgr.sign (ME.travel_claim);

MOVE ME TO ME.ctr;

ME.travel_claim := ME.ctr.check (ME.travel_claim);

MOVE ME TO ME .at

ME.travel_claim := ME.a.pay (ME.travel_claim);

MOVE ME TO ME.t;

ME.travel_claim := ME.t.file (ME.travel_claim);

END

END_COOPERATION

1

I
I

|
I

|
I

|
I

C O M M U N I C A T I O N S OIR TIHIIB ACM September 1993/Vo1.36, No.9 133

positions can be described in a generic
way (i.e., that they may be superim-
posed on different basic algorithms).
This way, operat ional aspects can be
p rog rammed in a reusabl,e way, dras-
tically reducing software develop-
ment costs. Suppor t for generic su-
perimposit ions reqmres all
identifiers to be in the local scope of
the superimposit ion, described in a
way that they can be replaced by ac-
tual identifiers of the basic algori thm
if necessary'.

Superimposition Language
In o rde r to describe superimposi-
tions with the preceding propert ies, a
new language was developed, called
TSL (The Superimposition Language).

TSL requires a host language that
provides object-oriented features
and a procedura l notat ion of the
computat ional model, as most exist-
ing object-oriented languages pro-
vide. Thus, TSL is not limited to
DODL but can be seen as a general
language architecture.

Interlacing statements. TSL allows
a p r o g r a m m e r to describe positions
where statements should be im-
planted. First the interlacing "pieces"
of a super imposi t ion are iidentified,
called implants. Each o f them is asso-
ciated with a so-called integration
predicate, consisting o f one or more
integration statements. These contain
selection rules which identify the posi-
tions within the basic algori thm
where the implant is to be put. A se-
lection rule consists of two parts: an
execution order identifier defines the
position of the implant relative to the
selected statements (BEFORE,
AFTER, or CONCURRENT_TO), and
a statement filter determines all parts
of the basic algori thm which have to
be super imposed. A statement filter
can be ei ther simple or restrictive. Sim-
ple statement filters are statement
classes such as assignments, operation
call statements, or /f statements. The
exact number and kinds of ..statement
classes depend on the computat ional
model of the host language.

Restrictive statement 61ters re-
quire fur ther informat ion about the
context of statements (i.e., their en-
compassing statements or internal
structure). We identif ied three

O ~ o o

D O L 0

groups o f restrictive statement fil-
ters.

• Statements o f a given statement
class might be selected only if they
contain certain information. For this
purpose, object filters are offered, de-
scribed in more detail later.
• Another filter selects statements
only if they exist as substatements of
control constructs, such as blocks, al-
ternatives, or loops.
• I f statements should only be selected
if their substatements fulfill another
statement filter; a third class of re-
strictive statement filters has to be
used (in fact, this class is fur ther sub-
divided into one for the substate-
ments and one for the statements to
be finally selected).

An object filter allows selection o f
statements because of their internal
structure. Object filters rely heavily
on the capabilities of the host lan-
guage. The following list of possible
object filters is extracted from the
current integrat ion with DODL.

• Select statements which contain
operat ion calls to certain objects
using the object filter AS_CONTROL-
LING_OBJECT.
• Select statements which call a cer-
tain operat ion (AS_OPEB,/LTION).

Fur ther , more specific object filters
exist.

Generic integration predicate. In
o rde r to reuse superimposi t ions effi-
ciently, integrat ion predicates have
to be as generic as possible. This
means, for example, that they have
to abstract from the actual identifiers
used in the basic algorithms. There-
fore, the filters represent a first step
toward reusability. However, it is
often necessary to express selection
rules based on knowledge about the
semantics of the basic algori thm, for
example, when searching for certain
object references or opera t ion
names. But even then, an integration
predicate should be generic. All
names used in an integration predi-
cate should be local to the superim-
position and replaced when the su-
per imposi t ion takes place. This can
be done with two dif ferent kinds of
parameters :

• Replacement parameters are similar

to formal parameters o f an opera-
tion. They replace all kinds of names
with actual ones. At declarat ion time
of the superimposit ion, actual names
have to be given for each replace-
ment parameter . The re may be a list
of names per replacement parame-
ter, leading to a parallel evaluation o f
the integrat ion predicates for each
name in the list.
* At evaluation time, the first occur-
rence of a bind parameter forces the
super imposi t ion tool to bind the cur-
rent actual name to the bind parame-
ter. For the r ema inde r of the inte-
grat ion predicate, the bound actual
name is used for evaluation each
time the b ind pa ramete r occurs. I f a
bind pa ramete r binds a list o f actual
names, the integrat ion predicate is
evaluated in parallel using one name
per evaluation. The developer of the
super imposi t ion does not need to
know how often the pa ramete r is
bound. Thus bind parameters sup-
por t genericity and reusability of in-
tegrat ion predicates.

Before the parameters can be
used, they have to be declared. Since
they are to be used for all kinds of
names, their correct usage should be
checked. For this reason parameters
are classified into operation names, ob-
ject references, and type names.

Superimposition Example
In this section, we want to exemplify
the applicability o f TSL for the inte-
grat ion of operat ional aspects into
arbi t rary basic algorithms. For the
sake of space, we refer to the migrat-
ing global control flow of the travel
expense example.

Using the super imposi t ion ap-
proach provided by TSL, the cooper-
ation designer can separate the mi-
grat ion statements by using a
"migration superimposit ion," as
shown in Figure 11, consisting o f a
single integrat ion predicate.

The bind pa ramete r obj is neces-
sary, since the super imposi t ion de-
signer would typically not know how
many par tners o f the cooperat ion
exist. Since the pa ramete r is used for
object references, it is classified ac-
cordingly (OBJECT). The opera t ion
filter is as generic as possible, i.e., all
operat ions of the basic type are taken
into consideration.

1 ~ 4 September 1993/Vol.36, No,9 C O l l i H U N I C A T I O N ! OP T N I JICM

~ H o

O L O G

SUPERIMPOSITION migration

INTEGRATION_PREDICATES

explicit_migration

! declaration of bind parameter

BIND obj: OBJECT

t generic operation filter follows: read as 'all operations'

IN ANY:

! insert the implant before each identified statement

BEFORE

t restrictive statement filter searching for all statements which

! contain an operation call to an instance of a configured type

ALL STATEMENTS WHERE

AS_CONTROLLING_OBJECT (BIND obj) : CONFIGURED_TYPE

! implant the migration statement

=> MOVE ME TO obj;

END_SUPERIMPOSITION

Figure ! 1. Sample integration
predicate for object migration

The selection rule of the integra-
tion statement contains the execution
order identifier BEFORE because the
migration of the cooperation object
should happen before the next part-
ner will be invoked. The statement
filter is restrictive, consisting of a
simple filter (ALL 8~Wl~MEI~8)
and a ~rI-IERE clause. Only those
statements should be selected which
contain invocations to configured
types. Thus the object filter has to
search for controlling objects which
are configured objects. Since the
number of partners is unknown, the
bind parameter is used to bind the
actual names that are needed below.
Finally, the implant of the integra-
tion statement is given: the migration
statement.

Design Assistant
In order to support the design pro-
cess in the DOCASE environment, a
design assistant was developed as a
generic tool set. The following sec-
tions describe the models on which
this tool set is based, concentrating
on a language for the description of
design methods which is used for
customization of the design assistant.

Design Methods
A design method is composed of
four major ingredients:

1. Design elements are the basic build-
ing blocks used during the design
process to construct the system
under development. They may have
a textual and/or graphical notation.
Design elements are instantiated into
design artifacts. These design artifacts
are the basic units of the design pro-
cess. They represent entities of a
problem domain or relations among
such entities.
2. Design steps are operations per-
formed on design elements or design
artifacts.
3. A design procedure is used to trans-
form the entities of the problem
domain into design artifacts of the
solution domain. By applying design
steps in a correct and reasonable
order (as proposed by the design
procedure), software quality aspects
are assured.
4. A set of design rules specifies prede-
fined semantic constraints among
design elements and/or artifacts.
Note that these rules focus on check-
ing the (maybe intermediate) results
of the design process instead of sup-
porting the actual design procedure.

The basic problem of current de-
sign techniques lies in the fact that
design procedures and rules are
given rather informally, as in [3] and
[21]. This makes it difficult for soft-
ware developers to use design steps
and elements as intended.

System Architecture
The design assistant consists of three
layers: the human interaction layer,
the functional layer, and the data
layer (see Figure 12). This architec-
ture conforms to the general archi-
tectural approach for software devel-
opment environments as proposed in
[17].

The human interaction layer consists
of a customizable graphical editor. It
supports the graphical representa-
tion and modification of design arti-
facts as well as the user interface to
the design assistant (for further in-
formation see [14]).

The functional layer offers a design
method interpreter together with a de-
sign method description language--
the heart of the assistant. With this
language, a specific design method is
specified, which is then interpreted
by the method interpreter. The lan-
guage comprises three parts:

• The user interface specification de-

© o ~ u m c x * v m m n o l T u l A c ~ September 1993/Vol.36, No.9 ~

scribes how the functionality re-
quired by the design method inter-
preter is :mapped to the facilities
offered by the graphical editor.
• The issue specification describes the
design procedure as a sequence o f
design issues based on an extension
to the issue-based design model as
proposed in [18]. The remainder of
this section focuses on ~Lhis central
part o f the language.
• The artifact description provides the
specification o f different kinds of
design elements. As mentioned, both
textual and[graphical design repre-
sentation are relevant. Therefore,
the current prototype uses an ex-
tended parse tree specification as its
artifact representation. To obtain t h e

required tree, extensions to compiler
generation tools are used (providing
for node manipulation, tree tra-
versal, and parse/unparse functional-
ity).

The data layer provides an (object-
oriented) artifact repositc,ry which is
not considered here.

Issue Specification
The issue specification provides a for-
mal representation o f the issue-based
design model. It consists of the de-
scription of the issues themselves and
their composition into a design pro-
cedure.

Design issues. A design issue is the
procedure o f solving a design prob-
lem by evaluating several alternative
solutions and finally making a deci-
sion. In an issue, one or more artifacts
a r e reviewed: questions are asked
about the artifacts; positions respond
to these questions. Finally, one posi-
tion is selected, and respective design
steps are executed.

Arguments support or object to posi-
tions. Two kinds o f arguments can be
distinguished:

A. Method-specific arguments are
based on the design elements of a
method, i.e., their syntax and seman-
tics. A "good" design method is ex-
pected to provide intensive support
for these kinds of arguments.
B. Domain-specific arguments depend
on an application domain and there-
fore mainly result from the applica-
tion specification. Providing support

O"
D 0 L 0

for these arguments is rather diffi-
cult. It depends on expert knowledge
of certain application areas and re-
quires intensive experience about
how to use a design method within
an application domain.

Without any tool support, the de-
signer has to perform all the tasks
himself: having to identify issues
raised by previous steps and reflect
on the artifacts with respect to these
issues. To find an adequate solution
for an issue, the designer has to look
for alternative positions, select a po-
sition, as well as find and appraise
arguments. Then the designer has to
modify the design by executing the
appropriate steps. Most o f these ac-
tivities are today carried out implic-
itly, without even writing them down
for further elaboration. A design as-
sistant can release the designer from
these tasks and provide an audited,
revisable, and structured path
through the design phase.

The issue description is based on
the following general considerations:

• As many issues as possible should
be predefined and offered to the
designer. The "smaller" and "sim-
pler" these issues are, the easier a r e

the steps resulting from the issues.
This is important with the automatic
execution of steps. Therefore, com-
plex issues should be divided into
several subissues.
• The more fixed and unique the
sequence of issues is, the better an
assistant can help. Exceptions
(caused, for example, by errors and
forgetfulness of the designer) must
be considered.
• Rich argument bases should be
offered to the designer, providing
both method-specific and domain-
specific arguments. Thus the design-
er's task of appraising arguments can
be drastically simplified.
• The steps (belonging to a certain
issue) should be executed automati-
cally as far as possible, i.e., the cur-
rent design status and additional
input provided by the designer
should automatically lead to a trans-
formation of design artifacts.
• Decision strategies should be speci-
fied in order to handle conflicting
arguments selected by the designer
from the arguments provided.

Design process: Sequences of issues.
In realistic design methods, collec-
tions of issues are important. How-
ever their specification is one o f the
most difficult aspects o f a design
method description. Collections of
issues are helpful especially for nov-
ice designers who need strict guid-
ance within both complex methods
and methods that handle design ele-
ments in a certain order. The follow-
ing types of collections are supported
by the design assistant:

• Threads of issues define a strict se-
quence o f issues for a set o f artifacts.
Within a design method, there may
be multiple independent threads of
issues. A thread is finished if the se-
quence o f issues is performed for all
artifacts o f the set.
• Check lists specify a set of closely
related issues for a set o f artifacts. A
check list is finished if all its issues a r e

completed for the set o f artifacts.
• A thread of artifact refinements is de-
rived from the issues specified for a
certain design method, the current
state of an artifact, and its refine-
ment history. Support for this kind
of collection is still in a very experi-
mental stage and needs more investi-
gation in general.

An example issue. As a sample we
present the issue of identifying class
candidates as proposed by the object-
oriented method "Responsibility-
Driven Design" [21]. According to
the method, first all nouns are ex-
tracted from a textual problem speci-
fication. From the list of nouns class
candidates are identified. Figure 13
shows this formulated as an issue for
our assistant prototype, realized as a
preprocessor for C+ +.

The issue FindClassCandidates
starts with a textual DESCRIPTION
of its purpose, followed by DECL/k-
P~TIONS of local variables. In the
example, noun (of type NounAr-
tifact) and NewClass (of type Class-
Artifact) are defined along with the
string variable ClassName.

The PROFILE section contains
graphical attributes for the issue,
used to control the graphical editor.
Only the DISPLAY attribute is set,
specifying that the graphical object
representing the NounArtifact
stored in variable noun should be

1 3 6 September' 1993/Vol.36, No.9 C l O I r A I M U N I C A ' I ' I O N I O P T H i A C M

Figure 12. Architecture of the
design assistant

Figure 13. Sample issue from
Responsibility Driven Design

shown to the user.
The issue BODY contains ARGU-

MENTS, POSITIONS, and STEPS.
In our example, each element of the
set SetOfNouns is displayed to the
designer, who decides (by selecting
one of the arguments) whether and
how to create a new class. Arguments
may be jus t textual hints as in this
example, or they may be computed
in o rde r to check design rules. In our
current prototype, the selection of
one a rgument immediately imposes a
position (future versions will allow
the selection of mult iple arguments) .

Steps use artifact modification
operations. Fur thermore , they may
call single subissues or collections of
issues. In our example, the first three
arguments describe the case in which
the noun in fact is a ClassArtifact.
Therefore , the name of the current
artifact noun is used for the Class-
Artifact to be created (STEP l). I f
the n o u n is the value of an entity, the
subissue GetNameOfArt i fac t is
called in o rde r to get the name of the
class (STEP 2). Fur thermore , the
subissue MoreValues is invoked in
o rde r to identify other values of the
new class (STEP 4). In all cases a new
class is created and inserted into the
set of class artifacts (SetOfClasses),
and the artifact noun is removed
from the set of noun artifacts
(STEP 3).

Conclusions
There is much more to distr ibuted
object-oriented software develop-
ment than the provision of distribu-
t ion- t ransparent method invocation
and object migrat ion support . The
DOCASE project tr ied to develop
and suppor t a holistic view of such
a development . However, the me-
thodic approach described in this
article can only represent one small
step toward a more adequate soft-
ware technology for dis tr ibuted ap-
plications. Many more efforts are
needed in this direction in o rde r to
avoid a drastic aggravation of the

H 0

,0° .~ o L o o

HI Layer J customizable graphical editor I

t-
design method interpreter

f design method "~
L description language)

Functional Layer •

i
Data Layer artifact repository

ISSUE FindClassCandidates IS

DESCRIPTION

Identify possible candidates for classes from the list of nouns.
First, select a noun. Then select an argument,
that supports the fact, that the noun is a class.

ENDDESCRIPTION

DECLARATIONS

NounArtifact* noun;
string ClassName;
ClassArtifact* NewClass;

PROFILE

DISPLAY = noun;

BODY

FOREACH noun FROM SetOfNouns DO
SELECT1 ARGUMENT FROM

Class : "The noun denominates a physical entity."
Class : "The noun denominates a conceptual unit."
Class : "The noun denominates a category of terms."
Value : "The noun denominates a value of an entity."
Generic : "There is an abstract generic term for this noun."
Unknown : "None of the above applies."

DO

POSITIONS

Class :
Value :
Generic :
Unknown :

STEPS

i.

2.

3.

4.

END

END

STEP i; STEP 3;

STEP 2; STEP 3;

STEP 2; STEP 3;

STEP 4;

ClassName = noun->GetName;
ClassName = ISSUE GetNameOfArtifact;
NewClass = new ClassArtifact(ClassName);
SetOfClasses->lnsert(NewClass);
SetOfNouns->Remove(noun);
delete(noun);
ISSUE MoreValues(NewClass);

END CLASSCANDIDATES;

C Q I M M U M | ~ A T I O M I I O F T H I I A ¢ ~ September 1993/Vol.36, No.9 ~17

sof tware crisis as we m o v e f r o m tra-
di t ional appl icat ion sof tware to inte-
g ra ted ne tworked solutions in the
contex t o f office, manufac tu r ing ,
and en te rpr i se in tegra t ion .

T h e in,fight into the D O C A S E
project is o f course incomple te . Fur-
the r activities a re the d e v e l o p m e n t o f
a d is t r ibu ted objec t -or ien ted run-
t ime system, which is exp la ined by
A c h a u e r in this issue [1], conf igura -
t ion suppor t , in par t icu lar conf igura -
t ion extens ions to D O D L [22], an
a p p r o a c h to declara t ive object place-
m e n t and heuris t ic object migra t ion
suppo r t [19], the D O D L in terac t ion
category, i.e., a typed a p p r o a c h to
mul t ipa r ty c o m m u n i c a t i o n schedules
[20], and the visual p r o g r a m m i n g
tool O D E [114].

References
1. Achauer, B. The DOWL distributed

object-oriented language. Commun.
ACM 36, 9 (Sept. 1993).

2. Black, A., Hutchinson, N., Jul, E.,
Levy, H. and Carter, L. Distribution
and abstract types in Emerald. IEEE
Trans. Softw. Eng. 13, 1 (Jan. 1987),
65-75.

3. Booch, G. Object-Oriented Design with
Applications. Benjamin Cummings,
Reading, Mass, 1990.

4. Cicak, 13. and Mfiller, A. Object-
oriented modelling of a production
control system. Master's Thesis, Dept.
of Computer Science, FH Furtwan-
gen, Germany, 1992. In German.

5. Decouchant, D., Duda, A., Paire, E.,
Riveill, E., Rouset de Pina, X. and
Vand6me, G. Guide: An implementa-
tion of the Comandos object-oriented
architecture on Unix. In Proceedings
of EUUG Autumn Conference (Lisbon,
Portugal, Oct. 1988).

6. Decouchant, D., Krakowiak, S.,
Meysembourg, M., Riwelli, M. and
Rousset de Pina X. A synchronization
mechanism for typed objects in a dis-
tributed system. ACM/SIGPLAN Not.
24, 4 (Apr. 1989).

7. Gerteis, W. and Wirz, W. Synchroniz-
ing objects by conditional path ex-
pressions. In Proceeding~ of Tools Pa-
cific '91 (Sydney, Australia, Dec.
1991).

8. Gerteis, W., Zeidler, Ch., Heuser, L.
and Mfihlh~user, M. I)OCASE: A
development environment and a de-
sign language for distributed object-
oriented applications. In Proceedings
of Tools Pacific '90 (Sydney, Australia,
Nov. 1990), pp. 298-3112.

9. Heuser, L. Processes in distributed

"~ o o
O 0 L O

object-oriented applications. In Pro-
ceedings of TOOL '90 (Karlsruhe, Ger-
many, Nov. 1990), pp. 281-290.

10. Kaatz, J. Object-oriented modelling
of a flexible machine cell. Master's
Thesis, Dept. of Electronics, FH
Furtwangen, Germany, 1993. In Ger-
man.

11. Katz, S. A superimposition control
construct for distributed systems.
Tech. Rep. STP-268-87, MCC, Aus-
tin, Tex., 1987.

12. Kramer, J., Magee, J., Sloman, M.,
Dulay, N., Cheung, S.C., Crane, S.
and Twidle, K. An introduction to
distributed programming in REX. In
Proceedings of ESPRIT Conference '91
(Brussels, Belgium, Nov. 1991),
ESPRIT.

13. Lea, R. and Weightman, J. COOL:
An object support environment co-
existing with Unix. In Proceedings of
ATUU Convention Unix "91 (Paris,
France, Mar. 1991).

14. Leidig, T. and Mfihlh~iuser, M.
Graphic support for the development
of distributed applications. In Pro-
ceedings of GI/NTG KIVS "91 (Mann-
heim, Germany, Feb. 1991).

15. Magee, J., Kramer, J. and Sloman, M.
Constructing distributed systems in
CONIC. IEEE Trans. Softw. Eng. 15, 6
(June 1989), 663-675.

16. Mfihlh~iuser, M. Computer-based
learning with distributed multimedia
systems. In Proceedings of the Interna-
tional Conference on Human Aspects of
Computing and Information Manage-
ment (Stuttgart, Germany, Sept.
1991).

17. Mfihlh~iuser, M., Schill, A., Kien-
h6fer, J., Frank, H. and Heuser, L. A
software engineering environment
for distributed applications. In Pro-
ceedings of Euromicro "89 K6hn, Ger-
many, Sept. 1989, pp. 327-332.

18. Potts, C. A generic model for repre-
senting design methods. In Proceed-
ings of the Eleventh International Confer-
ence on Software Engineering, 1989.

19. Schill, A. Mobility control in distrib-
uted object-oriented applications. In
Proceedings of the 1EEE International
Conference on Computers and Communi-
cations (Phoenix, Ariz., Mar.), IEEE,
New York, 1990.

20. Schill, A. and Gerteis, W. Communi-
cation schedules: An n-party commu-
nication abstraction mechanism for
distributed applications. In Proceed-
ings of the Tenth ICCC '90 (New Delhi,
India, Nov. 1990), pp. 643-651.

21. Wirfs-Brock, R. J., Wiener, L. and
Wilkerson. Designing Object-Oriented
Software. Prentice-Hall, Englewood
Cliffs, N.J., 1990.

22. Zeidler, C. and Gerteis W. Distribu-
tion: Another milestone of applica-
tion management issues. In Proceed-
ings of Tools Europe "92 (Dortmund,
Germany, Mar. 1992), pp. 87-99.

CR Categories and Subject Descrip-
tors: D.1.3 [Software]: Programming
Techniques--concurrent programming;
D.2.2 [Software Engineering]: Tools and
Techniques--software libraries; H.2.4
[Database Management]: Systems--
concurrency

General Terms: Design, Performance
Additional Key Words and Phrases:

Concurrency, object-oriented concurrent
programming

About the Authors:
MAX MUHLHA, USER is professor of
distributed systems at the University of
Karlsruhe. Current research interests in-
clude distributed application engineer-
ing, distributed multimedia systems, dis-
tributed simulation, and computer-
supported instruction and cooperation.

WOLFGANG GERTEIS is a Ph.D. candi-
date in the Institute of Telematics at the
University of Karlsruhe. Current re-
search interests include software engi-
neering, with a special focus on design
methods of distributed object-oriented
design and programming. Authors' Pres-
ent Address: University of Karlsruhe,
Institute for Telematics, D-76128 Karls-
ruhe, Germany; email: {max, gerteis}
@telematik.informatik.uni-karlsruhe.de

LUTZ HEUSER is the director of the
applied research and advanced develop-
ment center at CEC Karlsruhe of Digital
Equipment Corporation. Current re-
search interests include distributed pro-
gramming, workflow-based software en-
gineering, and multimedia collaboration.
Author's Present Address: Digital Equip-
ment Corporation, CEC Karlsruhe, Vin-
cenz-Priessnitz-Str. 1, D-76131 Karls-
ruhe, Germany; email: heuser@kampus.
enet.dec.com

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© ACM 0002-0782/93/0900-127 $1.50

1 3 8 September 1993/Vol.36. No.9 c o m m U m l C : a ' l r l o m m O l I T N m & C M

