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istributed object-oriented programming 
languages have proved to be superior to 
other known approaches for the 
development of complex distributed 
applications. Most of these languages 
support location-independent method 
invocation and object migration. 
Together with the fine granularity of 
objects, these features allow distribution- 
transparent modeling and programming. 
However, large object-oriented applica- 
tions tend to exhibit huge numbers of 

objects and intertwine several operational software aspects 
for which a more methodic approach is required. The 
DOCASE project (Distribution and Objects in CASE) was 
established to identify fundamental elements of such a 
method approach. 

There is an increasing demand for complex multiparty 
distributed applications, such as cooperative office 
workflow systems. A predominant problem in the develop- 
ment of these applications is the request for distribution 
abstraction, which comprises "natural" distribution 
aspects such as locality, remote invocation, or availability. 
In the past, process-oriented or RPC-based approaches led 
to client/server (C/S) computing. Thereby, the boundaries 
between client and server processes had to be determined 
early in the software life cycle. However, solutions to many 
distribution problems have to go beyond C/S computing 
to meet their requirements [17]. 

Provided that some basic design rules are observed, the 
object-oriented approach leads to distributed applications 
consisting of large numbers of"small" objects. Such "fine- 
grained" applications can be distributed over the target 
distributed system at installation time (e.g., with the goal 

to balance processor load or to 
minimize internode communica- 
tion). Thereby, local and remote 
method calls are absolutely equivalent 
on the syntactic level. In order to 
determine the (initial) mapping of 
objects to network nodes at installa- 
tion time, distributed object-oriented 
systems usually offer special language 
elements [12] or even dedicated "con- 
figuration languages" [15]. 

Moreover, most distributed object- 
oriented programming languages, 
such as Emerald [2], DOWL [1], Guide 
[5], and COOL+ + [13], allow migra- 
tion of objects at run time (i.e., sen- 
ding them to another node). Many 
such languages allow migration of 
objects even during their invocation. 

To summarize, distributed object- 
oriented programming languages 
support distribution-transparent 
programming extremely well. Addi- 
tionally, they exhibit the known 
advantages of the object-oriented 
approach in general, such as data 
encapsulation, fine-grained modu- 
larity, reusability, and extendability. 

There are, however, major dif- 
ficulties in using current distributed 
object-oriented technology. The 
DOCASE project tried to address 
these. Three particular problems and 
the solutions developed in DOCASE 
are discussed in this article: common 
representation of design artifacts and 
their implementation; modulariza- 
tion of algorithms by separating 
dynamic distribution aspects from 
application algorithms; and guidance 
throughout the design process. We 
will present the hybrid language 
DODL, the superimposition language 
TSL, and DOCASE design assistant 
with its design method description 
language. These three approaches 
together provide a unique level of  
design and implementation support 
for complex distributed applications. 
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They have a language-based approach 
in common since we are convinced 
that language support is crucial to 
provide extensive tool support. 

Accompanying Example 
To guide the user through the vari- 
ous concepts of  DOCASE we provide 
a sample distributed appli.cation. The 
problem to be solved is an office ap- 
plication t[~at allows processing of  
travel expense claims. The  various 
steps to be supported are: An em- 
ployee fills, in an electronic travel 
claim sheet; his or her cost center 
manager  signs it; a clerk checks if it 
conforms I:o all rules; accounting 
sends out a payment; and[ finally the 
travel claim gets filed. Employees are 
expected to work on desktops while 
the cost center manager  works on a 
department: server; the clerk who 
checks the :rules and accounting use 
an office server; and filing is done on 
a database server. 

The  application should coordinate 
the workflow throughoul: a distrib- 
uted system (i.e., the enterprise net- 
work all the involved employees are 
working on). All these steps should 
be affected only by the availability of  
the node of  the actual perfbrmer,  but 
not by those used by the other em- 
ployees. 

Hybrid Language 
DOCASE attempts to enhance the 
distributed object-oriented approach 
with better support for design and 
structured programming. [n particu- 
lar, the decision was taken to inte- 
grate design and implementation 
into a seamless phase, supported by a 
single hybrid language, called DODL 
(DOCASE Design Language). The  
inherent advantage o f  using a single 
language is the avoidance o f  an arti- 
ficial barrier between the two phases 
which would[ mark a virtual "end of  
design" and "beginning of  imple- 
mentation" and would make it hard 
to feed implementation-level 
changes back to design. A single lan- 
guage can, in addition to this, sup- 
port attempts to shorten the software 
life cycle, to introduce concurrent  
engineering, and to apply iterative 
rapid prototyping or spiral software 
development. The  risk, of  course, is 
that neither of  the two phases will be 
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supported sufficiently or that clearly 
consecutive and distinct steps of  soft- 
ware development will be mangled. 

A particular strength of  DODL lies 
in its dual graphical and textual nota- 
tion: each language element has, in 
addition to its textual syntax, a 
graphical depiction associated with it. 
DODL is a design language due to its 
graphics aspects, structuring sup- 
port, support for incomplete and it- 
eratively refined design, and anima- 
tion of  incomplete designs. DODL is 
also an implementation language in 
that it includes a full-fledged compu- 
tational model, a broad range of  
statements, all elements of  other dis- 
tributed object-oriented languages, 
and a complete configuration lan- 
guage. 

Rather than present the language 
in-depth, we will concentrate on its 
key concept, namely, object categories, 
and explain them by using their 
graphical notations. 

DODL Object Categories 
The credo of  the object-oriented 
community, "Everything is an ob- 
ject," has become common knowl- 
edge. This phrase means that "the 
object" is the rich yet singular syntac- 
tic and semantic element of  object- 
oriented languages. It is rich because 
of  its many facets such as data ab- 
straction, typing, inheritance, and 
message-based method invocation. It 
is singular since "traditional" distinc- 
tions like "functions and data," "cli- 
ent and server," "active and passive," 
"information entity and information- 
processing entity," "procedure call, 
information flow, and control flow" 
vanish in the object-oriented context. 

Instead, the software engineers 
are responsible for introducing such 
distinctions, for example, by provid- 
ing different top-level object types. 
But then, these distinctions exist 
mainly in the mental model o f  the 
software engineers, exhibited 
through the names given to the dif- 
ferent object types. Design and pro- 
gramming tools will not be able to dis- 
tinguish and check different kinds of  
objects or actions other than by 
checking signatures (type, object, 
and method identifiers, call parame- 
ters). 

DODL type categories provide pre- 

defined semantics for different no- 
tions o f  application types captured by 
various language constructs. This 
means, for instance, that 

• Category names are keywords of  
the language. 
• Category-specific characteristics 
are collected in specific sections of  a 
type description. 
• Category-specific actions of  objects 
are captured in special statements of  
the language. 
• Other  tools such as the visual de- 
sign/programming tool [14] are 
aware of  the characteristics of  differ- 
ent type categories, too. 

Of  course, the crux in all this is the 
"right" choice o f  type categories, 
guided by the question: which are 
the key categories o f  a "typical" dis- 
tributed application, as seen by a 
software engineer? Based on our  sev- 
eral years of  experience with the de- 
velopment of  complex distributed 
applications [4, I0, 16], and drawing 
from the experience of  many senior 
software engineers, we have chosen 
the type categories described later. 

In almost all cases, a sketch of  a 
complex (procedural or  object- 
oriented) software system consists of  
"major" software modules (pro- 
cesses, clients/servers, subsystems), o f  
relations between them (denoting 
communication, control flow), and of  
masses of  "little objects" (informa- 
tion, events) exchanged between the 
"major" modules along the relations. 
This intuitive understanding leads to 
the three key and most crucial type 
categories, called configured type, gen- 
erated type, and relation type. In addi- 
tion, locality is the key distribution 
aspect reflected by the category logi- 
cal node. 

Configured Type 
Configured types are used to design the 
basic software architecture o f  an 
application, which we call "applica- 
tion configuration." Intuitively, con- 
figured objects (i.e., instances o f  
types belonging to the category con- 
figured type) are "long-living" or "sta- 
ble"; adding or  removing one o f  
them is a major act o f  "configuration 
change." While other objects refer to 
one another via references held in 
instance variables, configured objects 
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are explicitly interconnected via spe- 
cial references called connections. 
Thus, configured objects and the 
connections between them form a 
skeleton of the application. 

In Figure 1 the skeleton of the 
travel expense application is shown. 
Each organizational unit is repre- 
sented by a configured type. The 
order of execution implies the 
knowledge about other configured 
types through connections. 

Subcategories of configured type. In 
order to provide for better hierarchi- 
cal structuring of application config- 
urations, the (semantically poor) ob- 
ject-oriented aggregation concept 
was enhanced to that of subsystems; 
they denote a set of configured ob- 
jects, their relations, and manage- 
ment. Active types schedule their own 
threads and may exhibit characteris- 
tics of actors or agents if designed 
accordingly. Environment agents cope 
with the popular legacy problem: 
they provide object-oriented "wrap- 
pers" around existing software pack- 
ages with which one would typically 
have to interface from a complex in- 
tegrated application. 

Figure 2 refines the categorization 
(see Figure 6 for the subcategories). 
Each employee works concurrently 
to others, so they are modeled as ac- 
tive types. "Accounting" is an organi- 
zational unit that represents a group 
of clerks and encapsulates to whom 
the action actually gets delegated. 
Therefore, it is modeled as a subsys- 
tem. 

Generated Type 
In contrast to configured objects, 
generated objects are created and ma- 
nipulated (mainly by configured ob- 
jects) without affecting the configu- 
ration. Intuitively, generated objects 
are created in masses and may have a 
rather short lifetime. Mails, route- 
slips, messages might be examples of 
these. 

The travel claim is a generated 
type because its instances are gener- 
ated by a configured-object "initia- 
tor" and manipulated by other con- 
figured objects (see Figure 3). 
Furthermore, even a travel expense 
system without any travel claims (i.e., 
an empty system), is valid whereas a 
missing configured object corrupts 
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initiator CC_mgr c l e r k  accounting clerk 

has connection to 

initiator CC_mgr c l e r k  accounting clerk 

has connection to (configured type or any sub-category) 

L~__J 
initiator ~ CC_mgr ~ clerk ~accounting~-''~ clerk 

) has connection to ~ passes to 

the execution of the travel expense 
process. 

Relation Type 
Object-oriented languages usually 
offer nothing but instance variables 
for modeling all kinds of relation- 
ships among objects and nothing but 
method calls for modeling all kinds 
of "flows" along these relationships 
(control flow, synchronization, infor- 
mation flow, activation). Complex 
relationships such as time-spanning 
multiparty interaction patterns [20] 
"vanish" in the program code: there 
is no central place where the relation 
is specified and maintained and 
where its state is kept; there are no 
means for typing such relationships. 
In DODL, relation types are used to 
specify complex semantic relation- 
ships. Relations are typically estab- 
lished between configured objects, and 
they may specify details of the ex- 
change of generated objects. 

Subcategories of relation type. Inter- 
action relations are used to model 
complex multiparty interaction pat- 
terns [20]. The collocation category is 
used to relate objects which may oc- 
casionally migrate onto a single node 
during periods of intensive commu- 
nication [19]. 

Long-living, global control flows 
or "workflows" can be modeled using 
the cooperation category, where sev- 
eral configured objects are related via 
a global control flow. A cooperation 

Figure 1. Application skeleton 

Figure 2. Application skeleton 
(refined) 

Figure 3. In format ion f low 

is used when none of the configured 
objects can provide the full function- 
ality but each provides part of  it as a 
partner of the cooperation. The 
global control flow coordinates the 
partners by defining the order of 
execution and by providing the com- 
mon context. 

The design of the sample applica- 
tion changes when a cooperation 
type is introduced (see Figure 4). In- 
stead of peer-to-pee:r connections, 
the configured types are enrolled as 
partners of the cooperation, not 
knowing who else belongs to it (un- 
less this information should be visi- 
ble). The travel claim is part of the 
common context and therefore ref- 
erenced by the cooperation object. 
For each travel claim, a global control 
flow is launched which is encapsu- 
lated in an instance o:[ the travel_ex- 
pense_cooperation. 

Logical Node 
This category provides the interface 
to the physical configuration. At de- 
sign/programming time, the "appli- 
cation configuration" may refer to 
"logical nodes," see Figure 5. By 
mapping logical nodes onto real ones 
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initiator 

travel_expense_cooperation 

CC_mgro o o o clerk " - , , ,  accounting " "  - . .  

. . . .  ~ is enrolled as partner in knows 

clerk 

Figure 4. l~avel expense cooper- 
ation 

Figure S. Object placement 

Figure i .  Graphical depiction of 
DODL categories 

at installation time, major aspects of 
the physical configuration are deter- 
mined. Logical nodes ]'effect the 
granularity of execution (i.e., each 
one is realized as a single program or 
workspace executed while the dis- 
tributed application is running). 

For the sake of space, other cate- 
gories such as DOCASE type, role type, 
and event type are not addressed here. 
For further information we refer to 
[8] and [9]. Figure 6 shows the icons 
associated with each of the DODL 
categories. Graphical design/ 
programming of a DODL applica- 
tion can start by picking, instantiat- 
ing, customizing, and interrelating 
such categories in a way sirailar to the 
use of  WYSIWYG drawing packages. 

Concurrency M o d e l  o f  IDODL 
DOCASE supports a thread-based 
concurrency model which is divided 
into three levels, each of which can 
be developed independently. 
Threads are treated as components 
of  logical nodes, active types, and 
cooperation,~. Synchronization is 
done at the level of objects, i.e., ob- 
jects are single threaded. Providing 
synchronization at a finer granular- 
ity, i.e., methods [6, 7], is desirable 
but beyond the current scope of the 
DOCASE project. 

-Figure 7 illustrates the concur- 
rency model by excerpting concur- 
rent objects (active objects and coop- 
erations) from the example. Each 
object is located on exactly one logi- 

initiator CCmgr  clerk accounting clerk 

"~ "~ ""4 P" ~" @ @ @ @ 
. . . . .  ~ is mapped onto 

DOCASE 
type 

configured j /L . .  #11~ J active type 
type 

~ subsystem 

environment 
generated agent 

type 

I ~ I event type 

role type 

J 
\ j ]  

relation type 

logical node + 

collocation 

cooperation 

interaction 

cal node which itself is executed 
within an operating system (OS) pro- 
cess. Within each OS process, threads 
are running, each belonging to an 
object of one of the preceding cate- 
gories. Parallelism is inherently given 
by the underlying distributed com- 
puter network. 

Further Design and 
Implementation-Level Support 
For further design-level support, 
DODL incorporates, as design aids, 
several syntactic means to deal with 
incompleteness of the system under 
development. The following list of 
concepts is incorporated into a draft 
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design of  the travel expense coopera- 
tion (see Figure 8; keywords are capi- 
talized). 

• The keyword TBD may be used 
instead of  a type or variable identi- 
fier, allowing for a declarative or 
structural description of  the actual or  
referenced object; this is particularly 
important  since many object- 
oriented design approaches deter- 
mine the instances of  an application 
first and care about types only then. 
• For program sections yet to be de- 
fined, designers can use the UNDE- 
FINED keyword to make an under- 
specified DODL program syntacti- 
cally correct (for the effect see 
below). 
• UNDEF is a valid value for all ob- 
ject references and for simple types 
and serves as a default value. This 
helps to trace forgotten initializa- 
tions, for example. 
• UNDEF_.BEGIN and UNDEF_END 
embrace incomplete or unknown 
parts of  an algorithm which are se- 
mantically checked as far as possible 
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but for which code cannot be gener- 
ated. 

The  handling of  these constructs is 
controlled by options of  the DODL 
compiler. It ranges from ignoring 
them in early design phases, via 
semi-automatic interactive resolu- 
tion, to considering all of  them as 
errors in late implementation phases. 
In particular, the DODL visual pro- 
gramming tool can cope with "un- 
derspecified" programs that make 
heavy use of  the preceding state- 
ments. 

S u p e r i m p o s i t i o n  
The traveLexpense_cooperation is 
further  refined in Figure 9. Each 
step is executed by an object; coordi- 
nation is provided by the global con- 
trol f low named exec__tec. We assume 
that each performing object is lo- 
cated on the node of  the person in 
charge of  performing the corre- 
sponding step. Taking into account 
this underlying physical configura- 
tion and assuming the cooperation is 

executed on the workstation of  the 
person initiating the cooperation, the 
following distribution scenario takes 
place: The traveLclaim object being 
local to the cooperation results in a 
large number  o f  remote method in- 
vocations during execution, i.e., 
every time the traveLclaim is ac- 
cessed or the global control flow ad- 
vances to the next step. This means 
internode communication is signifi- 
cant. Additionally, if the network is 
not very reliable these steps risk fail- 
ure. To overcome these shortcom- 
ings, the designer has to increase lo- 
cality by dynamically migrating the 
cooperation and its associated 
travel_claim to the objects perform- 
ing individual steps. 

Considerations like these distribu- 
tion aspects are called operational as- 
pects in DOCASE, since they do not 
change the functionality of  the coop- 
eration. Other  such operational as- 

Figure 1. DODL c o n c u r r e n c y  model 

Cooperations with global control flows 
.,, ~-,~ . . . . . . . . .  4;,, ~. 

w.ththreads 

, / t" I 

1 

I I I" I 
, i ," i 

~ Logicalnodes ~ ~ mapped onto OS processes 

~ Parallelism ~ ~ 

.... • I~ is enrolled as partner in ..... I~ is mapped onto 3 thread _- is running on 
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COOPFRATION t rave l_expense_coopera t ion  

DECLARATIONS 

t~avel_claim: 

PARTNERS 

i: initiator; 

mgr: cc_mgr; 

ctr: clerk; 

a: accounting; 

t: clerk; 

TBD ; ! The type of the travel claim is yet unknown 

! Partners are the objects which perform steps of t rave l_expense 

STATES 

U N D E F I N E D  • ! It is not yet def ined if a set of pre-def ined states has to exist 

GLOBAL_CONTROL FLQW exec_tec 

BEGIN 

ME.travel  c l a im :=  UNDEF ; 

! Ini t ial izat ion is not yet  def ined. 

ME.t ravel_c la im := ME.i.f i l l_in ( U N D E F I N E D )  ; 

! The parameter  list of 'f i l l_in' is not yet def ined 

UNDEFBEGIN 

UNDEF_ END 

END 

END_COOPERATION 

rest of the g!obal control  f low is not yet def ined 

I ~ traw~l_expense cooperation 
] exec_tec]  

] t r a v e l _ c l a i m ]  

initiator CC_mgr clerk accounting clerk 

. . . . . .  I~ global control flow - - - - >  is enrolled in . . . .  ~ list of operation calls 

' ~ ~  DODL depiction of an operation to be provided (here: by a cooperation partner) 

Figure  8. I n c o m p l e t e n e s s  in 
DODL 

F igure  S. Travel e x p e n s e  cooper -  
at ion:  g l o b a l  c o n t r o l  f l o w  

pects include security, robustness 
(e.g., checkpoint/recovery), and ac- 
counting. 

An easy solution to the preceding 
problem is the inclusion of migration 
statements before each step in the 
global control flow. Figure 10 shows 

the corresponding piece of DODL 
code. The reader might ask why the 
run-time system cannot take care of  
this optimization aspect. Indeed, it 
could. However, decisions about 
migration would be made using heu- 
ristics based on a posteriori knowl- 
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edge. Therefore, a system would 
have to gather communication be- 
havior first, which in our example 
would probably lead to the wrong 
decision (i.e., migration after being 
used by the performing objects). 
Migration statements, however, allow 
explicit incorporation of a priori ap- 
plication knowledge. Obviously, ap- 
plication-oriented distribution as- 
pects at an object level differ from 
system-oriented distribution aspects 
at an OS process level, for example, 
load balancing. 

R e q u i r e m e n t s  
In the preceding example, the opera- 
tional aspect interlaces the basic algo- 
rithm. For larger and more realistic 
examples this is highly undesirable. 

~ H  o ~ 0  D ~ 
O L o G  

Common approaches to structured 
programming and modularization of 
software do not provide means to 
separate algorithms which have to be 
interlaced at run time. Therefore, 
even an object-oriented approach to 
complex applications with several 
operational aspects will lead to spa- 
ghetti code, turning maintenance of 
an operational aspect (e.g., moving to 
a new distribution policy) into a 
nightmare. In order to better main- 
tain, extend, and reuse such opera- 
tional algorithms, they should be iso- 
lated at both design and 
implementation time. 

In DOCASE, we have elaborated 
the little-known approach of superim- 
position [11] in order to resolve this 
problem. The principle idea is to 

layer different algorithms and to 
allow "higher-layer" algorithms 
(here: operational ones) to superim- 
pose so-called basic algorithms. The 
major problem stems from the fact 
that superimposing algorithms de- 
pend on the context in which their 
statements will be executed, making 
the isolation difficult. This means 
that for the description of a superim- 
posing algorithm, means have to be 
provided for "talking" about charac- 
teristics of  the superimposed basic 
algorithm. 

Apart from modularity, a big ad- 
vantage can be achieved if superim- 

F i g u r e  10. Travel  e x p e n s e  c o o p -  
e r a t i o n :  m i g r a t i o n  

COOPERATION 

DECLARATIONS 

travel claim: 

PARTNERS 

i: initiator; 

mgr: cc_mgr; 

ctr: clerk; 

a: accounting; 

t: clerk; 

t ravel_expense_cooperat ion 

f rom_AX4234 

! Partners are the objects which perform steps of travel_expense 

GLOBAL_CONTROLFLOW exec_tec 
migration statement interlaced 

BEGIN < with the basic algorithm 

MOVE ME TO ME. i ,  i / pteerPo~fteh ~ ~ypPaetration.~) 

ME.travel_claim := ME.i.fill_in ( ) ; . ~ r  

M O V E  M E  T O  M E , m g r ;  

ME.travel_claim := ME.mgr.sign (ME.travel_claim); 

MOVE ME TO ME.ctr; 

ME.travel_claim := ME.ctr.check (ME.travel_claim); 

MOVE ME TO ME .at 

ME.travel_claim := ME.a.pay (ME.travel_claim); 

MOVE ME TO ME.t; 

ME.travel_claim := ME.t.file (ME.travel_claim); 

END 

END_COOPERATION 

1 

I 
I 

| 
I 

| 
I 

| 
I 
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positions can be described in a generic 
way (i.e., that they may be superim- 
posed on different basic algorithms). 
This  way, operat ional  aspects can be 
p rog rammed  in a reusabl,e way, dras- 
tically reducing software develop- 
ment  costs. Suppor t  for generic su- 
perimposit ions reqmres all 
identifiers to be in the local scope of  
the superimposit ion,  described in a 
way that they can be replaced by ac- 
tual identifiers of  the basic algori thm 
if necessary'. 

Superimposition Language 
In o rde r  to describe superimposi-  
tions with the preceding propert ies,  a 
new language was developed,  called 
TSL (The Superimposition Language).  

TSL requires a host language that 
provides object-oriented features 
and a procedura l  notat ion of  the 
computat ional  model,  as most exist- 
ing object-oriented languages pro-  
vide. Thus,  TSL is not  limited to 
DODL but can be seen as a general  
language architecture.  

Interlacing statements. TSL allows 
a p r o g r a m m e r  to describe positions 
where statements should be im- 
planted.  First the interlacing "pieces" 
of  a super imposi t ion are iidentified, 
called implants. Each o f  them is asso- 
ciated with a so-called integration 
predicate, consisting o f  one or  more 
integration statements. These contain 
selection rules which identify the posi- 
tions within the basic algori thm 
where the implant  is to be put. A se- 
lection rule consists of  two parts: an 
execution order identifier defines the 
position of  the implant  relative to the 
selected statements (BEFORE, 
AFTER, or  CONCURRENT_TO), and 
a statement filter determines  all parts 
of  the basic algori thm which have to 
be super imposed.  A statement filter 
can be ei ther  simple or restrictive. Sim- 
ple statement filters are statement 
classes such as assignments, operation 
call statements, or /f statements. The  
exact number  and kinds of  ..statement 
classes depend  on the computat ional  
model  of  the host language. 

Restrictive statement 61ters re- 
quire fur ther  informat ion about the 
context of  statements (i.e., their  en- 
compassing statements or  internal  
structure). We identif ied three 

O ~ o o 
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groups o f  restrictive statement fil- 
ters. 

• Statements o f  a given statement 
class might  be selected only if they 
contain certain information.  For  this 
purpose,  object filters are offered,  de- 
scribed in more detail  later. 
• Another  filter selects statements 
only if they exist as substatements of  
control  constructs, such as blocks, al- 
ternatives, or  loops. 
• I f  statements should only be selected 
if  their  substatements fulfill another  
statement filter; a third class of  re- 
strictive statement filters has to be 
used (in fact, this class is fur ther  sub- 
divided into one for the substate- 
ments and one for the statements to 
be finally selected). 

An object filter allows selection o f  
statements because of  their  internal  
structure.  Object filters rely heavily 
on the capabilities of  the host lan- 
guage. The  following list of  possible 
object filters is extracted from the 
current  integrat ion with DODL. 

• Select statements which contain 
operat ion calls to certain objects 
using the object filter AS_CONTROL- 
LING_OBJECT. 
• Select statements which call a cer- 
tain operat ion (AS_OPEB,/LTION). 

Fur ther ,  more  specific object filters 
exist. 

Generic integration predicate. In 
o rde r  to reuse superimposi t ions effi- 
ciently, integrat ion predicates have 
to be as generic as possible. This 
means, for example,  that they have 
to abstract from the actual identifiers 
used in the basic algorithms. There-  
fore, the filters represent  a first step 
toward reusability. However,  it is 
often necessary to express selection 
rules based on knowledge about  the 
semantics of  the basic algori thm, for 
example,  when searching for certain 
object references or  opera t ion  
names. But even then, an integration 
predicate  should be generic. All 
names used in an integration predi-  
cate should be local to the superim- 
position and replaced when the su- 
per imposi t ion takes place. This  can 
be done with two dif ferent  kinds of  
parameters :  

• Replacement parameters are  similar 

to formal  parameters  o f  an opera-  
tion. They  replace all kinds of  names 
with actual ones. At  declarat ion time 
of  the superimposit ion,  actual names 
have to be given for each replace- 
ment  parameter .  The re  may be a list 
of  names per  replacement  parame-  
ter, leading to a parallel  evaluation o f  
the integrat ion predicates for each 
name in the list. 
* At  evaluation time, the first occur- 
rence of  a bind parameter forces the 
super imposi t ion tool to bind the cur- 
rent  actual name to the bind parame-  
ter. For  the r ema inde r  of  the inte- 
grat ion predicate,  the bound  actual 
name is used for evaluation each 
time the b ind  pa ramete r  occurs. I f  a 
bind pa ramete r  binds a list o f  actual 
names, the integrat ion predicate  is 
evaluated in parallel  using one name 
per  evaluation. The  developer  of  the 
super imposi t ion does not  need to 
know how often the pa ramete r  is 
bound.  Thus  bind parameters  sup- 
por t  genericity and reusability of  in- 
tegrat ion predicates. 

Before the parameters  can be 
used, they have to be declared.  Since 
they are  to be used for all kinds of  
names, their  correct  usage should be 
checked. For  this reason parameters  
are classified into operation names, ob- 
ject references, and type names. 

Superimposition Example 
In this section, we want to exemplify 
the applicability o f  TSL for the inte- 
grat ion of  operat ional  aspects into 
arbi t rary  basic algorithms. For  the 
sake of  space, we refer  to the migrat-  
ing global control  flow of  the travel 
expense example.  

Using the super imposi t ion ap- 
proach provided by TSL, the cooper-  
ation designer  can separate  the mi- 
grat ion statements by using a 
"migration superimposit ion,"  as 
shown in Figure 11, consisting o f  a 
single integrat ion predicate.  

The  bind pa ramete r  obj is neces- 
sary, since the super imposi t ion de- 
signer would typically not  know how 
many par tners  o f  the cooperat ion 
exist. Since the pa ramete r  is used for 
object references,  it is classified ac- 
cordingly (OBJECT). The  opera t ion  
filter is as generic as possible, i.e., all 
operat ions of  the basic type are  taken 
into consideration.  
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SUPERIMPOSITION migration 

INTEGRATION_PREDICATES 

explicit_migration 

! declaration of bind parameter 

BIND obj: OBJECT 

t generic operation filter follows: read as 'all operations' 

IN ANY: 

! insert the implant before each identified statement 

BEFORE 

t restrictive statement filter searching for all statements which 

! contain an operation call to an instance of a configured type 

ALL STATEMENTS WHERE 

AS_CONTROLLING_OBJECT (BIND obj) : CONFIGURED_TYPE 

! implant the migration statement 

=> MOVE ME TO obj; 

END_SUPERIMPOSITION 

Figure ! 1. Sample integration 
predicate for object migration 

The selection rule of the integra- 
tion statement contains the execution 
order identifier BEFORE because the 
migration of the cooperation object 
should happen before the next part- 
ner will be invoked. The statement 
filter is restrictive, consisting of a 
simple filter (ALL 8~Wl~MEI~8) 
and a ~rI-IERE clause. Only those 
statements should be selected which 
contain invocations to configured 
types. Thus the object filter has to 
search for controlling objects which 
are configured objects. Since the 
number of partners is unknown, the 
bind parameter is used to bind the 
actual names that are needed below. 
Finally, the implant of the integra- 
tion statement is given: the migration 
statement. 

Design Assistant 
In order to support the design pro- 
cess in the DOCASE environment, a 
design assistant was developed as a 
generic tool set. The following sec- 
tions describe the models on which 
this tool set is based, concentrating 
on a language for the description of 
design methods which is used for 
customization of the design assistant. 

Design Methods 
A design method is composed of 
four major ingredients: 

1. Design elements are the basic build- 
ing blocks used during the design 
process to construct the system 
under development. They may have 
a textual and/or graphical notation. 
Design elements are instantiated into 
design artifacts. These design artifacts 
are the basic units of the design pro- 
cess. They represent entities of a 
problem domain or relations among 
such entities. 
2. Design steps are operations per- 
formed on design elements or design 
artifacts. 
3. A design procedure is used to trans- 
form the entities of the problem 
domain into design artifacts of the 
solution domain. By applying design 
steps in a correct and reasonable 
order (as proposed by the design 
procedure), software quality aspects 
are assured. 
4. A set of design rules specifies prede- 
fined semantic constraints among 
design elements and/or artifacts. 
Note that these rules focus on check- 
ing the (maybe intermediate) results 
of the design process instead of sup- 
porting the actual design procedure. 

The basic problem of current de- 
sign techniques lies in the fact that 
design procedures and rules are 
given rather informally, as in [3] and 
[21]. This makes it difficult for soft- 
ware developers to use design steps 
and elements as intended. 

System Architecture 
The design assistant consists of three  
layers: the human interaction layer, 
the functional layer, and the data 
layer (see Figure 12). This architec- 
ture conforms to the general archi- 
tectural approach for software devel- 
opment environments as proposed in 
[17]. 

The human interaction layer consists 
of a customizable graphical editor. It 
supports the graphical representa- 
tion and modification of design arti- 
facts as well as the user interface to 
the design assistant (for further in- 
formation see [14]). 

The functional layer offers a design 
method interpreter together with a de- 
sign method description language-- 
the heart of the assistant. With this 
language, a specific design method is 
specified, which is then interpreted 
by the method interpreter. The lan- 
guage comprises three parts: 

• The user interface specification de- 
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scribes how the functionality re- 
quired by the design method inter- 
preter is :mapped to the facilities 
offered by the graphical editor. 
• The issue specification describes the 
design procedure as a sequence o f  
design issues based on an extension 
to the issue-based design model as 
proposed in [18]. The  remainder of  
this section focuses on ~Lhis central 
part o f  the language. 
• The  artifact description provides the 
specification o f  different kinds of  
design elements. As mentioned, both 
textual and[ graphical design repre- 
sentation are relevant. Therefore,  
the current  prototype uses an ex- 
tended parse tree specification as its 
artifact representation. To obtain t h e  

required tree, extensions to compiler 
generation tools are used (providing 
for node manipulation, tree tra- 
versal, and parse/unparse functional- 
ity). 

The  data layer provides an (object- 
oriented) artifact repositc,ry which is 
not considered here. 

Issue Specification 
The issue specification provides a for- 
mal representation o f  the issue-based 
design model. It consists of  the de- 
scription of  the issues themselves and 
their composition into a design pro- 
cedure. 

Design issues. A design issue is the 
procedure o f  solving a design prob- 
lem by evaluating several alternative 
solutions and finally making a deci- 
sion. In an issue, one or  more artifacts 
a r e  reviewed: questions are asked 
about the artifacts; positions respond 
to these questions. Finally, one posi- 
tion is selected, and respective design 
steps are executed. 

Arguments  support or object to posi- 
tions. Two kinds o f  arguments can be 
distinguished: 

A. Method-specific arguments are 
based on the design elements of  a 
method, i.e., their syntax and seman- 
tics. A "good" design method is ex- 
pected to provide intensive support  
for these kinds of  arguments. 
B. Domain-specific arguments depend 
on an application domain and there- 
fore mainly result from the applica- 
tion specification. Providing support  
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for these arguments is rather diffi- 
cult. It depends on expert knowledge 
of  certain application areas and re- 
quires intensive experience about 
how to use a design method within 
an application domain. 

Without any tool support, the de- 
signer has to perform all the tasks 
himself: having to identify issues 
raised by previous steps and reflect 
on the artifacts with respect to these 
issues. To find an adequate solution 
for an issue, the designer has to look 
for alternative positions, select a po- 
sition, as well as find and appraise 
arguments. Then  the designer has to 
modify the design by executing the 
appropriate steps. Most o f  these ac- 
tivities are today carried out implic- 
itly, without even writing them down 
for further  elaboration. A design as- 
sistant can release the designer from 
these tasks and provide an audited, 
revisable, and structured path 
through the design phase. 

The  issue description is based on 
the following general considerations: 

• As many issues as possible should 
be predefined and offered to the 
designer. The  "smaller" and "sim- 
pler" these issues are, the easier a r e  

the steps resulting from the issues. 
This is important  with the automatic 
execution of  steps. Therefore,  com- 
plex issues should be divided into 
several subissues. 
• The  more fixed and unique the 
sequence of  issues is, the better an 
assistant can help. Exceptions 
(caused, for example, by errors and 
forgetfulness of  the designer) must 
be considered. 
• Rich argument  bases should be 
offered to the designer, providing 
both method-specific and domain- 
specific arguments. Thus  the design- 
er's task of  appraising arguments can 
be drastically simplified. 
• The  steps (belonging to a certain 
issue) should be executed automati- 
cally as far as possible, i.e., the cur- 
rent design status and additional 
input provided by the designer 
should automatically lead to a trans- 
formation of  design artifacts. 
• Decision strategies should be speci- 
fied in order  to handle conflicting 
arguments selected by the designer 
from the arguments provided. 

Design process: Sequences of issues. 
In realistic design methods, collec- 
tions of  issues are important. How- 
ever their specification is one o f  the 
most difficult aspects o f  a design 
method description. Collections of  
issues are helpful especially for nov- 
ice designers who need strict guid- 
ance within both complex methods 
and methods that handle design ele- 
ments in a certain order. The  follow- 
ing types of  collections are supported 
by the design assistant: 

• Threads of issues define a strict se- 
quence o f  issues for a set o f  artifacts. 
Within a design method, there may 
be multiple independent  threads of  
issues. A thread is finished if the se- 
quence o f  issues is performed for all 
artifacts o f  the set. 
• Check lists specify a set of  closely 
related issues for a set o f  artifacts. A 
check list is finished if all its issues a r e  

completed for the set o f  artifacts. 
• A thread of artifact refinements is de- 
rived from the issues specified for a 
certain design method, the current 
state of  an artifact, and its refine- 
ment history. Support  for this kind 
of  collection is still in a very experi- 
mental stage and needs more investi- 
gation in general. 

An example issue. As a sample we 
present the issue of  identifying class 
candidates as proposed by the object- 
oriented method "Responsibility- 
Driven Design" [21]. According to 
the method, first all nouns are ex- 
tracted from a textual problem speci- 
fication. From the list of  nouns class 
candidates are identified. Figure 13 
shows this formulated as an issue for 
our  assistant prototype, realized as a 
preprocessor for C+ +. 

The issue FindClassCandidates 
starts with a textual DESCRIPTION 
of  its purpose, followed by DECL/k- 
P~TIONS of  local variables. In the 
example, noun (of type NounAr-  
tifact) and NewClass (of type Class- 
Artifact) are defined along with the 
string variable ClassName. 

The  PROFILE section contains 
graphical attributes for the issue, 
used to control the graphical editor. 
Only the DISPLAY attribute is set, 
specifying that the graphical object 
representing the NounArtifact 
stored in variable noun should be 
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Figure 12. Architecture of the 
design assistant 

Figure 13. Sample issue from 
Responsibility Driven Design 

shown to the user. 
The  issue BODY contains ARGU- 

MENTS, POSITIONS,  and STEPS. 
In our  example,  each element  of  the 
set SetOfNouns is displayed to the 
designer,  who decides (by selecting 
one of  the arguments)  whether  and 
how to create a new class. Arguments  
may be jus t  textual hints as in this 
example,  or  they may be computed  
in o rde r  to check design rules. In  our  
current  prototype,  the selection of  
one a rgument  immediately imposes a 
position (future versions will allow 
the selection of  mult iple arguments) .  

Steps use artifact modification 
operations.  Fur thermore ,  they may 
call single subissues or  collections of  
issues. In  our  example,  the first three 
arguments  describe the case in which 
the noun in fact is a ClassArtifact. 
Therefore ,  the name of  the current  
artifact noun is used for the Class- 
Artifact to be created (STEP l ). I f  
the n o u n  is the value of  an entity, the 
subissue GetNameOfArt i fac t  is 
called in o rde r  to get the name of  the 
class (STEP 2 ). Fur thermore ,  the 
subissue MoreValues is invoked in 
o rde r  to identify other  values of  the 
new class (STEP 4 ). In  all cases a new 
class is created and inserted into the 
set of  class artifacts (SetOfClasses), 
and the artifact noun is removed 
from the set of  noun artifacts 
(STEP 3). 

Conclusions 
There  is much more  to distr ibuted 
object-oriented software develop- 
ment  than the provision of  distribu- 
t ion- t ransparent  method invocation 
and object migrat ion support .  The  
DOCASE project tr ied to develop 
and suppor t  a holistic view of  such 
a development .  However,  the me- 
thodic approach described in this 
article can only represent  one small 
step toward a more  adequate  soft- 
ware technology for dis tr ibuted ap- 
plications. Many more efforts are 
needed in this direction in o rde r  to 
avoid a drastic aggravation of  the 
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HI Layer J customizable graphical editor I 

t- 
design method interpreter 

f design method "~ 
L description language ) 

Functional Layer • 

i . . . . . .  
Data Layer artifact repository 

ISSUE FindClassCandidates IS 

DESCRIPTION 

Identify possible candidates for classes from the list of nouns. 
First, select a noun. Then select an argument, 
that supports the fact, that the noun is a class. 

ENDDESCRIPTION 

DECLARATIONS 

NounArtifact* noun; 
string ClassName; 
ClassArtifact* NewClass; 

PROFILE 

DISPLAY = noun; 

BODY 

FOREACH noun FROM SetOfNouns DO 
SELECT1 ARGUMENT FROM 

Class : "The noun denominates a physical entity." 
Class : "The noun denominates a conceptual unit." 
Class : "The noun denominates a category of terms." 
Value : "The noun denominates a value of an entity." 
Generic : "There is an abstract generic term for this noun." 
Unknown : "None of the above applies." 

DO 

POSITIONS 

Class : 
Value : 
Generic : 
Unknown : 

STEPS 

i. 

2. 

3. 

4. 

END 

END 

STEP i; STEP 3; 

STEP 2; STEP 3; 

STEP 2; STEP 3; 

STEP 4; 

ClassName = noun->GetName; 
ClassName = ISSUE GetNameOfArtifact; 
NewClass = new ClassArtifact(ClassName); 
SetOfClasses->lnsert(NewClass); 
SetOfNouns->Remove(noun);  
delete(noun); 
ISSUE MoreValues(NewClass);  

END CLASSCANDIDATES; 
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sof tware crisis as we m o v e  f r o m  tra- 
di t ional  appl icat ion sof tware to inte- 
g ra ted  ne tworked  solutions in the 
contex t  o f  office,  manufac tu r ing ,  
and  en te rpr i se  in tegra t ion .  

T h e  in,fight into the  D O C A S E  
project  is o f  course  incomple te .  Fur-  
the r  activities a re  the  d e v e l o p m e n t  o f  
a d is t r ibu ted  objec t -or ien ted  run-  
t ime system, which is exp la ined  by 
A c h a u e r  in this issue [1], conf igura -  
t ion suppor t ,  in par t icu lar  conf igura -  
t ion extens ions  to D O D L  [22], an  
a p p r o a c h  to declara t ive  object  place- 
m e n t  and  heuris t ic  object  migra t ion  
suppo r t  [19], the  D O D L  in terac t ion  
category,  i.e., a typed  a p p r o a c h  to 
mul t ipa r ty  c o m m u n i c a t i o n  schedules  
[20], and  the  visual p r o g r a m m i n g  
tool O D E  [114]. 
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