A Modeling / Programming Framework for
Large Media-Integrated Applications

Max Miihlhduser

Computer Science Dept., Institute for Telematics, Telecooperation Group
University of Karlsruhe, D-76128 Karlsruhe, Germany
max@tk.telematik.informatik.uni-karlsruhe.de

1 Introduction

Most present multimedia applications represent selfcontained off-the-shelf tools for
specific tasks. We believe that in order for multimedia technology to gain wide-
spread use, media-integrated applications must be emphasized; such applications
integrate customized multimedia use with ‘conventional’ applications, using
enterprise workflow models as the embracing concept.

Today, however, the development of large and cooperative media-integrated
applications is a painful and cumbersome crafting task, due to the lack of an
adequate software technology. As a consequence, we propose the development of a
more adequate software technology which we coin as the move from object-oriented
to items-oriented programming. Cooperative media-integrated applications will
rapidly gain importance in the future for the following three reasons.

Cooperation trend: multimedia base technology evolves rapidly and is marked
by a tight integration of three large market segments: consumer electronics,
information technology, and telecommunications. Example elements of this base
technology include ATM switches and networks, ‘multimedia-proof’
communication protocols (ST2, XTP, ec.) and storage technology (CD-ROM
extensions, document architectures, databases), media servers in distributed
systems, compression standards like JPEG and MPEG, and videophone standards
like the H.200-series. Many existing multimedia applications, however, represent
selfcontained off-the-shelf tools for very specific tasks (‘authoring' systems for
multimedia presentations, videoconferencing tools, etc.).

This is in drastic contrast to the integration trend which marks many software
application domains, such as Computer-Integrated Manufacturing and Engineering
(CIM, CIE), and office automation. Such integration, in turn, is viewed as the base
for better cooperation support in an organization; cooperation, here, has two facets:

* Workflow-type cooperation: organizations try to make better use of their large
enterprise networks by integrating their formerly isolated application packages;
thereby, outputs of packages are fed into other ones in an intelligent way, pack-
ages mutually call one another, and, most important, superimposed workflow
management software manages and traces the flow of work in the organization.

156

« CSCW-type cooperation: computer-supported cooperative work -CSCW-,
together with workflow management, is supposed to lead to enhanced coopera-
tion of all parts of an enterprise (supply chain, production process, efc.); with
CSCW-type cooperation, the focus is on the humans involved.

Media integration demand.: in the context of this integration / cooperation trend,
multimedia is no more an end in itself, but a requirement. Workflow-type
cooperation requires entire activity records and documents to be computerized
(traditional database applications kept only short, abstract descriptions: database
records). This leads to the use of multimedia objects such as scanned images,
digitized audio annotations, video and audio conference recordings, summarized as
persistent media. CSCW-type cooperation, on the other hand, requires transient
media to be captured, transmitted and presented in real time (video / audio
conferencing, application sharing, etc.).

Software technology requirement: A look at current software technology shows
that traditional software development tools are totally inadequate for large
distributed applications. E.g., the majority of CASE environments focus on
sequential software intended to run on a single computer. As to distributed
applications, there is a strong focus on client/server- (and, along with this, RPC-)
based techniques; strict client/server-structures, however, do not maich very well
with the complex, irregular organizational structures of an enterprise. And the
integration of distributed application engineering with multimedia and cooperation
support (in both facets, workflow and CSCW) is hardly approached at all.

To summarize, we see a heavy need for a new era in software technology,
enabling effective production of

+ large and distributed
« media-integrated
+ cooperative (workflow-type and CSCW-type)

application software. We want to use the term CMA (cooperative media-integrated
applications) in the remainder to denote this type of application. In the following,
we will recall major lessions which we learned in predecessor projects and describe
the embedding of our work in the current project context. We will then sketch major
aspects of an adequate framework for the development of CMAs.

2 Background

2.1 Experiences and Requirements

For the proposed framework, we draw from the experience gained in several
predecessor projects, undertaken jointly with other universities and industrial
research groups. Three of these projects are to be mentioned here.

Project Docase [GZH90,MGH93] lead to a modeling / programming framework for

157

large (non-multimedia) distributed applications. The key lessons learned were as
follows:

+ Distributed object-oriented programming languages form an excellent basis for
the development of large distributed applications. In particular, they exhibit
three features which we summarize as distribution transparency:

- such languages provide for location independent operation (‘method’) invo-
cation (i.e., local and remote ‘procedure’ calls are semantically equivalent).

- since design and implementation usually yield a large number of small
objects, decisions about the distribution of these objects over a target net-
work can be deferred to installation time; in particular, distribution aspects
do not have to be taken into account during design.

- if object migration is supported, distribution decisions can even be altered at
runtime.

* Adequate modeling and design support is crucial for the successful develop-
ment of large object-oriented programs: a huge number of objects have to be
handled on the implementation level, making object-oriented programs even
less managable than conventional ones. Docase supports modeling on the base
of socalled “object categories™, a concept that will be explained and expanded
in the context of the new framework proposed in this paper.

* For mission-critical software, lots of so-called “operatiomal” aspects need atten-
tion, such as authorization, authenication, reliability, and accounting. With cur-
rent software engineeering techniques, all these aspects are mangled into the
mainstream application code. Therefore, a new modularization concept was
developed, called ‘program superimposition’, extending work described in
[Kat93]. In chapter 3, we will motivate the application of this concept in the
context of the proposed new framework.

In the Nestor project [MiiS92], we developed services and tools for the development
of cooperative media-integrated courseware (computer-based teaching or
instruction material), On one hand, Nestor lead to a series of different multimedia
and CSCW tools, such as a software video codec, a tool for recording Xwindow
output to a file for further processing, and a tool which augments Xwindow
applications for cooperative use. On the other hand, applying these tools in
computer aided instruction made us aware of the need for a much more integrative,
customizable approach to courseware (and software) construction. In this respect,
we learned the following lessons from Nestor:

» the marriage of object-oriented concepts and hypertext leads to an appealing
and powerful new concept

* support for distributed multimedia aspects is essential; distribution transpar-
ency is particularly important, but needs substantial additions to the known
approaches mentioned above (i.e., distributed object-oriented techniques)

* while applications can be tranparently augmented for a primitive level of coop-
eration support, real “cooperation awareness” needs a substantial development
effort; at present, generic CSCW programming tools hardly exist.

158

The third predecessor project, DIRECT, represents a ‘hand-crafted’ sample CMA
which served for gathering requirements about the framework proposed in chapter
3. DIRECT supports physically distributed research or engineering teams with a set
of integrated cooperation and task management tools. It is centered around the
“issue-based design” metaphor for organizing ill-structured problems, originally
described in [Pot89]. Direct showed that

+ an integrated CMA can support the users much better than a set of isolated tools

+ such a CMA can be partly made up from pre-built components, provided the
components are highly customizable (programmable)

» workflows and human cooperation, as supported by a CMA, are highly interre-
lated; a common modeling concept for both is desirable.

2.2 Project Organization

The work described in chapter 3 is embedded into the B.I.G. embracing project
whose major sponsor is Digital Equipment:

B stands for Berkom, a stretegic project in Germany, which runs under the
auspices of the research and development spin-off of the german PTT, DTBerkom
Several multimedia services and tool suites are built as part of the project. Digital is
one of the major industrial partners in the project, our group is invoved in the
development of multimedia collaboration (MMC) and multimedia mail (MMM)
tool suites [ADH93].

I stands for Items, the project in which the CMA development framework is
developed by our group. This part is described in more detail in the following
section.

G stands for ‘Gigaswitch’, a new switching technology developed by Digital with
an aggregate throughput of several Gigabits per second. Gigaswitch connects
FDDI-based computers, but in contrast to standard FDDI, a star topology connects
the FDDI stations point-to-point, so that the full FDDI speed can be exploited by
every station. due to the use of dedicated point-to-point links, Gigaswitch networks
can assure quality of service parameters that make them much more suitable for
multimedia communication than standard FDDI. Future members of the Gigaswitch
familiy are supposed to assure transition to ATM.

In summary, the B and G parts of the BIG project allow our Items activities to be
embedded into a large testbed which relates our work to many national and
international activities, and which provides dedicated and multimedia-proof high-
speed connectivity; Berkom, in addition, provides tools and software pieces which
we can use (o evaluate our integration concepts.

159

3 Proposed Framework

3.1 Overview, Item-Oriented Programming

This chapter is devoted to the description of a framework for the development of
CMAs. The project and development environment are called ‘Items’, referring to
the idea of ‘item-oriented programming’. This term is meant to show that on one
hand, we use object-oriented programming as our basis, but on the other hand, we
extend the functionality of objects for better support of cooperation and multimedia
aspects (the term item can be understood as the acronym for ‘iconic telecooperat-
ing multimedia object)

Since we want to give an idea about the overall Items system, some details will
have to be related to more in-depth papers mentioned in the references. Some parts
of items represent revised and extended versions of modules and concepts devel-
oped in the predecessor projects mentioned. The Items system is still under con-
struction since the project is in a relatively early stage. In particular, the system still
consists of loosely coupled parts whose integration has not been achieved yet. The
cxperiences gained in predecessor projects, however, makes us confident that most
of the serious problems have been resolved and that the con(.epts described in the
remainder represent a feasible approach.

We will first give a coarse view of the overall Items architecture and the major
tool-building-tool which we are using (section 3.1). In section 3.3, we will concen-
trate on the item-oriented design and programming model. Thereby, we will give a
short overview of the top-level so-called ‘item categories’ available. In sections 3.4
through 3.7, we will describe the functionality of some of these categories in more
detail, concentrating on the following aspects for brevity: an introduction to our
support for distributed object-oriented programming in general (very coarsely dis-
cussed), support for distributed multimedia, support for workflow-type and CSCW-
type cooperation, and support for re-usable hypertext structures.

3.2 Items System Architecture

The Items system represents a whole software engineering environment with sev-
eral modeling, programming and monitoring tools, code management support, and
integration facilities on the data, tool, and UI layers. Fig. 3.1 concentrates on those
components of the Items system which are crucial for the design and execution of
item-oriented CMAs.

The most important tool is called VIP (visual item-oriented program design
tool). VIP accompanies the programmers throughout the design and implementa-
tion phases. It integrates both the graphical and the textual programming metaphor.
VIP supports graphical programming of the coarse and fine grained design, includ-
ing dynamic aspects. Code is automatically generated from design. There is no vir-
tual boundary between design and implementation; instead, textual programming

160

of software modules can be carried out in the context of the graphical.emities man-
aged by VIP. Thus, a seamless integration of design and. programming, of v1spal
and textual program development is supported. The sections below will describe

the elements of graphical programming (‘item categories’).

vip imENm]

1] | | 1
@pplic. desigD—-b TIC
1

{application j
1 1 1

1 1

Assistant Iruntime services

A 7 Pl RY

Application Development Application Execution

Fig. 3.1. Core tools and services of the Items system

VIP is built using a very generic tool-biulding-tool devel{laped in our group, called
ODE. ODE (object-oriented design editor) was used to build many d_Lffercnt graph-
ical tools and interfaces in the past. It is based on a very flexible object iT?OdE':l that
can be customized to the needs of the tool under construction. qu customization pf
ODE, a Lisp dialect is used; C and C++ routines can'bc linkefi into the code. Dif-
ferent graph layout algorithms are attached to ODE via a special layout subsystcrp
called LAMA. Currently, ODE is extended for use in distributed software engi-
neering environments and for cooperation with heterougeneous programming
tools. .

Apart from VIP; the so-called Items Design Assistant has to be m:?nnoned. ;ic
development of this assistant stems from the facl. that many de_slgn notations
(graphical, textual-language-based, or else) are associated with a design method, i.e
with strategies and rules to follow during design. Most design tools, ho?,vever,
hardly support the respective method; this is especially true for methods whu;h are
not totally ‘formal’, because their respective methods cannot be expressed in the
context of the design notation. The Items Design Assistant uses a separate fm:mal
language to describe an informally given development r.nethod, mapping 11' to
building blocks and operations of the design methods, to artifacts qf the app}wahon
under development, and -most important - to different types of artifacts which rep-
resent the reasoning about the design (steps, issues, arguments, etc_.). The concept
of a Design Assistant has been successfully used in the Docase project already (cf.
[MGH93]). .

As fig. 3.1 indicates, an application is transformed into executable code by spe-

161

cial transformation / compilation tools. Thereby, the graphical information is trans-
formed into source code and interleaved with the textual program parts. This leads
to purely textual source code which is compiled. The current version of Items sup-
ports a distributed version of C++ (called DC++) which was developed at our Insti-
tute. We intend to support a more elegant distributed object-oriented programming
in the future, a successor of the DOWL language developed in our group [Ach91].
DOWL is a strongly typed multiple-inheritance language which supports object
migration even for objects which are in execution. The language currently sup-
ported, DC++, is not as elegant (due to the ancestors, C and C++), but powerful
enough to reach distribution transparency in the context of Items.

At runtime, an item-oriented CMA relies on a number of sophisticated runtime
services, partly described below. In particular, we will describe the service which
provides distribution transparency in the presence of multimedia objects. Fig. 3.1
also indicates the decoupling of the core of item-oriented applications from their
user interface part, which is described further below, too.

3.3 Item Categories

Rationale: So-called class libraries have become a common approach in the object-
oriented community. In analogy to ‘function libraries’ of conventional languages,
such class libraries contain the definitions of pre-built ‘kinds of objects’ (called
‘classes’ or ‘types’, depending on the programming language) which together
represent the core functionality of a certain problem domain. E.g., ‘Interviews’ is a
very well-known C++ class library for the programming of window-based graphical
interfaces, making live much easier than with plain Xwindow programming. Two
major problems restrict the value of class libraries:

* When an application programmer uses a class library, he will usually have diffi-
culties to learn the syntax and semantics of the pre-defined object classes. He
will mostly have to depend on manuals and on the level of checking a compiler
can provide; the compiler, however, will ‘understand’ little of the semantics of
the object classes and nothing about the semantics of the way in which they are
to be used in an application - most checking will be on the syntactic level.

+ Large applications, CMAs in particular, will exploit many different facets and
aspects of functionality. A programmer will therefore want to use several differ-
ent class libraries. However, it is a common experience in large software
projects that only a very small number of different libraries or APIs can be inte-
grated with a single application program, due to the necessary effort to under-
stand the different ‘mind sets’, ‘models’, and ways of usage associated with
pre-built libraries or APIs,

In the items project, we try to overcome these problems by using the so-called
‘category approach’. Categories are pre-built object classes in the first place, but
their semantics are ‘understood’ by the programming tools and they cover the

162

complete software development, not only a small domain like graphical interface
programming. ‘

For further discussion, we refer to fig. 3.2. The somewhat ‘condensed’ layout in
this figure shows a tree with a root (parent node, called ‘item’) and two levels of
child nodes (first level: shapes only, no icons; second level: shapes and icons); at
one point, the third level is included as well (child nodes of ‘interactor”).

R oo ®

interactor system actor

® S ®

Ul_agent p_media t _media

il creature D g @

event record media

R T X

interaction stream teamaction link

>

s_imposition navigation cooperation

» | |
mapping ; - X ﬁ

tocreature tosubject toresource toforeign

Fig. 3-2 Item Categories

The main functionality of item categories can now be explained more precisely;

thereby, the differences to the common ‘class libraries’ should become obvious:

163

* A whole item-oriented CMA is made up of ‘items’: every class definition used
in an application must be derived from one (or several) of the categories shown
in fig. 3.2. Of course, every object (or item, to be more precise) in an applica-
tion must in turn be an instance of such a class definition.

+ The first level of categories below root (subject, creature, relation, flow, and
mapping) represents ‘orthogonal’ ‘meta’ categories. ‘Orthogonal’ means that
any class definition must be derived from exactly one of these five top-level cat-
egories (the items in an application can thus be divided into five disjunct sets).
‘Meta’ means that instances cannot be directly created from one of these cate-
gories, but only from their children and further descendants (sub-classes).

» The VIP graphical/textual program development tool offers sophisticated sup-
port to the software engineers as they develop an item-oriented CMA. Starting
from the palette of item meta-categories, the tool allows to select an actual cate-
gory of choice, to create or modify subtypes of this category (class-based view),
to define instances of a class or to redefine the class from which they are
derived (instance view), or to reason about various dynamic relationships
between classes or instances (scenario view). Since VIP ‘knows’ the semantics
of the categories, it guides the user as he specifies parts, relationships and
behaviour of a class and as he interconnects items in the design.

» The Items Assistant can be used to arrange the VIP-based micro-level design
operations (adding or modification of classes or insfances) into macro-level
steps according to an embracing design method and general design rules.

In the remainder of this section, we will give an overview of the item categories, to
the level of detail depicted in fig. 3.2 (note that further sub-categories exist):

Subject. The subject meta-category represents the entities that make up the
backbone ‘configuration’ of an application. An initial configuration of subjects
must be defined within any application; subjects can be added, removed, or
migrated between nodes only by means of explicit ‘configuration changes’. In
contrast to ‘creatures’, subjects typically have threads of control of their own, i.e.
they can act asynchronously and in parallel to other items. The following major sub-
categories of ‘subject’ exist:

* interactor: this category provides interfaces to human-perceivable information
representations; such information is supposed to come from or go to parts of the
system which are external to the applications, such as multimedia devices or
archives, and multimedia user interfaces. Three sub-categories of interactors are
depicted in fig, 3.2:

- UI_agent: this category plays an emportant role for ensuring high portablity
of item-oriented applications. It is motivated by the experiences with win-
dow-based graphical user interfaces (GUIs) based on common windowing
systems such as Motif or Windows. These systems usually offer a very low
level interface between the core application and the GUT: the ‘look and feel’
has to be described in terms of geometric data, and many window-system

164

specific details have to be programmed (he GUI server code itself cannot be
changed usually). This problem lead to the development of several systems
which support the use of several GUIs transparently. These approaches
encapsulate differences between different windowing systems, making
applications more portable.

The UI_agent category in items goes one step further: it encapsulates differ-
ences between Uls that are based on different media and metaphors (MUTIs).
Ul_agents come with a skeletal, high-level “application-to-UI protocol”
(where, e.g. the window-based concept "menu" is replaced by the more
abstract concept "selection”, "scope-change" replaces "zoom/pan”, etc.) and
with implementations for different MUI types (first version: window-based
and speech-enahnced). Both the protocol and the MUIs can be customized
to accomodate specific application needs and further MUI types.

- p_media: ‘permanent’ multimedia archives are encapsulated by this cate-
gory, covering the range from simple file store to document storage servers,
multimedia kiosks, and multimedia databases. The interface to a p_media
item may include queries and discrete and continuous media storage/
retrieval. The ‘subject’ nature of p_media allows it to model, e.g., asyncho-
nous (‘overnight’) delivery of information.

- t_media: the ‘transient’ t_media items encapsulate capturing and presenta-
tion devices such as cameras, microphones, displays, scanners, etc. Asyn-
chronous behaviour, here, may occur from the possibility for the user to
switch the device on or off or to carry out other local operations which the
computer can become aware of. Special synchronization support for multple
media is given according to the concept described in [BHL92],

» system: the system category compensates one of the lacks of conventional
object-oriented systems: while such systems provide an excellent means for
modelling ‘kind of” relations by inheritence, they support ‘part of’ relations
only marginally, usually by providing an ‘aggregate’ concept. ‘System’ items
represent the major concept for hierarchical (and overlapping) decomposition
of an application configuration. They enhance the ‘part of” concept consider-
ably: e.g., a system can offer an interface to the external items which com-
pletely hides the internal structure and contents. The role-resolution concept
(described further below) can be used for mapping the ‘external’ interface to
the content items of a system. Based on its own thread, a system controls its
internal configuration (number and types of configurable items, their intercon-
nection via ‘relation’ items, etc.) as well as the role-resolution.

* actors: very similar to the ‘active object’ concept available in some object-ori-
ented systems, actors may contain several (light-weigth) threads of their own
for which they manage concurrency and synchronization; actors dispatch
incoming requests autonomously.

Creature, The term ‘creature’ indicates that items of this category are created at
runtime. They are not considered part of the so-called ‘application configuration’,

165

Migration of ‘creatures’ can be determined autonomously by the ‘object placement
service’ of the runtime system (unless explicitly forbidden by the programmer).
Intuitively spoken, creatures model parts of an application which are created and
destroyed ‘in masses’, such as mails, route slips which accompany parts in a
production plant, or database records. Three sub-categories are relevant:

« event: this category models the classical ‘software trap’ concept and is used for
asynchronous activation of subjects.

« record: on one hand, records represent the ‘default’ modeling for ‘standard’
objects which do not differ from the kinds of objects found in a conventional
object-oriented system, On the other hand, the system support for migration,
propagation and routing of records makes their ‘journey’ through a distributed
system more efficient. Like media (see below), records are exchanged between
subjects, either directly or via ‘relations’.

« media: the media category provides the unique system model for all kinds of
single media and multimedia data. Its interface includes a set of generic opera-
tions (display, create, edit, etc.) and a ‘quality of service’ concept. More details
will be given in section 3.4.

Relation. With the ‘system’ category explained above, we compensated for
deficiencies in the object-oriented ‘part of” relation. The relation category now
compensates for deficiencies in the object-oriented ‘knows’ relation. in object-
oriented systems, one object ‘knows’ another one when it knows its unique
identifier (typically, this identifier is stored in a so-called ‘instance variable’). Any
object may call operations of any other object it *knows’, thereby establishing a
temporary communication relation. Thus, the communication relations between
objects are ‘hidden’ in the application program and neither explicitly modeled nor
casily tracked at runtime. For items, we introduce an explicit ‘relation’ category
which can be used to model binary and n-ary ‘communication paths’. The
following four sub-categories add more functionality to this concept.

» interaction: this category provides so-called communication schedules as
described in [ScG91]. They support multiparty relations and multi-stage com-
muniction (several subsequent interrelated communications). The communicat-
ing subject items involved are described via roles (which are resolved at
runtime).

» stream: in order to transport continuous media, ‘streams’ can be defined. Such
streams make efficient use of the underlying transport system and do not pro-
vide direct access to the data transferred (these data have to be extracted via the
interface of the ‘media’ category described above). Streams are also handled by
the distributed runtime service described in 3.4

 teamaction: the concept for generic CSCW-type cooperation support (described
in section 3.5 below) is founded on the idea that standard objects (more pre-
cisely: specific item categories such as media and record) can be extended to
team-objects by adding a ‘teamaction’ context to their operation. See below for
more details.

166

« link: this relation category adds basic hypertext functionality to the items
model. Links are mainly used in the context of ‘navigations’ (see below and
section 3.6). A link connects subjects cas its ‘sources’ and ‘destinations’; the
latter can be determined at instanciation time (static link) or at the time a ‘navi-
gation’ traverses the link (computed link).

Flow. In contrast to relations and similar to subjects, flows contain threads of their
own. A flow is akind of ‘global thread’ which may traverse many different subjects;
it is, however, long-lived and persistent (a flow may take on for months) and not
bound to any particular subject. A flow is not ‘hosted’ in a particular network node
and traverses node boundaries at will.

« s _imposition: as mentioned in chapter 2, the extended superimposition concept
used in items represents a way of coping with the multitude of ‘operational
aspects’ (accounting, security, reliability...) of large CMAs. The s_imposition
category contains both a ‘global thread’ (in the context of which certain opera-
tional aspects have to be considered) and a description about how the opera-
tional aspects are to be intertwined with the ‘global thread’ (and with all the
items called from there. This describtion uses parametrized code fragments and
so-called “filters’ which determine the details of how the fragments have to be
intertwined with other pieces of code (items, parts therein, parameter settings
etc.), based on a kind of formal semantics. We will not describe this fundamen-
tal concept in more detail since it is not central to the problems of cooperation
and multimedia; rather, we point to a fundamental article about program super-
imposition and to our own work in this respect [Kat93, Heu90].

« cooperation: this common modelling concept for both workflow-type and
CSCW-type cooperation will be described in 3.5

« navigation: a navigation can be seen as a ‘global thread’ which carries a ‘user’
through a series of subjects and links. Apart from the classical understanding of
‘hypertext navigation’ which supports users in reading complex documents,
navigation items may support individuals to carry out multiple activities in a
coordinated way, e.g., during a software development process. As such, naviga-
tions complement the ‘multi-user’ cooperations with a ‘single user’ global
thread. The navigation concept will be elaborated in 3.6.

Mapping. Much of the runtime flexibility of item-oriented CMAs is due to the four

role-resolution concepts included, called mappings:

« tocreature; this mapping can be used if the determination of the specific crea-
ture used in an application involves a non-trivial selection at runtime. E.g., dif-
ferent creatures may play a certain creature_role at different times; in this case,
the embracing program defines a ‘creature_role’, and the ‘tocreate’ mapping
defines both the required properties and the process of determining the specific
creatures to fulfil the role,

« tosubject: in analogy to the above, ‘tosubject’ defines how ‘subject roles’ are
resolved. This category will usually be much more important than the above
one, used in relations and flows in many ways.

167

= toresource: resources in items comprise humans, devices, nodes, and schedula-
ble resources such as bandwidth and compute time (corresponding sub-catego-
ries exist). As to humans, the ‘toresource’ maps person roles (e.g., as used in
cooperations) to individuals at runtime). Network nodes and schedulable
resources are taken into account by the multimedia object service described in
3.5, by the ‘object placement’ service mentioned in 3.4, and by ‘interactor’
items.

» toexternal: CMAs will hardly ever be built from scratch. Apart from item-ori-
ented software modules to be reused, ‘legacy software’ will have to be
included. In order to connect such legacy software to an item-oriented CMA,
we use a concept which conforms to the CORBA ‘object request broker’ stan-
dard issued by the ‘OMG’ standardization body (object management group).

3.4 Distributed Object-Oriented Programming

Since this paper concentrates on the cooperation and multimedia aspects of CMA
programming, we want to mention the general aspects of support for large distrib-
uted programs in items only very briefly. During the above section, however, it
should have become evident that the item-oriented programming concept covers all
aspects of distributed programming, not just cooperation and multimedia in partic-
ular. This reflects our central goal to support media-integrated applications. In
addition to the distributed object-oriented concept, which already provides an
excellent ground for the development of large distributed programs, items provides
particular support for substantially enhanced modeling and target customization.

Modeling is enhanced through the category concept which allows software
engineers to structure their application design in a ‘standardized’ way; category-
based designs can be better understood and more easily communicated to peer soft-
ware engineers, managers and users. Relation categories and flows help to make
the ‘behaviour’ of the system much more evident, superimpositions provide for
modularization and re-use of ‘operational’ aspects, and systems support better
decomposition.

Target customization means that the same application code can be used in dif-
ferent or evolving runtime environments. For this end, too, items provides serveral
concepts: sophisticated role resolution is supported with the mapping categories;
automatic dynamic object placement is carried out by a runtime service which
automatically migrates creatures (and selected other items) according to a heuris-
tics-based algorithm (which minimizes inter-node communication, cf. [Sch90]);
superimposition, again, is important since it allows to superimpose different opera-
tional algorithms at different times or for different target environments,

3.5 Distributed Multimedia Object Service

As discussed ecarlier, distribution transparency is essential for development

168

frameworks for large distributed programs in general. Thus, it has to be assured for
item-oriented programming in particular, However, distribution transparency is
particularly hard to maintain in the presence of multimedia information. e.g., fig. 3.3
depicts part of an application scenario which works with a multimedia ‘stream’
established between a p_media source and a two t_media sinks. The operation
semantics behind this scenario might be “play video x on the displays of persons y
and z"”. Distribution transparency, in this context, means that the programmer need
not care about the location of the video and the displays, neither about the available
network bandwidths, storage formats, supported compression formats etc.

appllcatlon

network & node QoS + operation requests
characteristics 4 J J

distributed multimedia object service

i ; T

operation execution (via transport objects)

\ workstatlons q
network q q Q

Fig. 3.3: Distribution Transparency for Multimedia Objects

To this end, we developed a distributed multimedia object service called MODE
[Bla92]. Mode is based on descriptions of the ‘environment’ of an application
(networks and workstation characteristics), given as ‘toresource’ mappings. It uses
the item-oriented multimedia object model and therefore ‘understands’ the quality
of service requirements and the operation calls issued by an application.

MODE is based on internal models of ‘presentation objects’ (cf. t_media and
p_media items), ‘information objects’ (cf. media items), and ‘transport objects’
(optimized for transport in a network, invisible to the item-oriented program). In our
example, the ‘environment information’ and the source and sink ‘presentation’
objects are used for an optimization at runtime.

Based on a ‘decision tree’, this optimization yields a so-called ‘path’ at runtime,
composed of (source/sink) presentation objects and of transport objects (in a
different example, ‘information objects’ could be included as well). This path
represents the sequence of media transformations, transports, and manipulations
which alltogether carry out the required operation under the given QoS constraints,
In the example, MODE might find out that there is a low-bspeed bridge between

169

source and destination requiring video compression, and that next to the users’
workstations there is a station which can carry out decompression in hardware.

3.6 Cooperation Support

The cooperation support is centered around the item categories ‘teamaction’ and
‘cooperation’, based on predecessor work described in [Riid91].

The cooperation category describes ‘global threads’ of parallel and sequential
activities with a mix of flow-oriented and rule-based techniques. A partial, flow-
oriented set of activities can be described as a ‘task’. Such a task is described as a
set of parallel and sequential activities, each of which is guarded by activation
conditions and by required results which mark successful completion, Tasks can be
assembled into cooperations based on a set of ordering rules (this leads to a high
degree of flexibility in the ordering of tasks).

Tasks refer to person_roles and ‘teamaction’ items. Teamactions augment
operations of creatures or subjects for use in a cooperation context. This way, any
item-oriented program can be easily extended for ‘cooperation awareness’, i.e. for
use in a CSCW-type and/or workflow-type cooperation context.

Fig. 3.4 indicates how methods can be augmented for cooperative use. Standard
items are shown to the left, subject_roles to the right. The important part is the
teamaction context in the middle colomn which determines the choice among
different pre-defined alternatives (about synchronism, visibility, and mode) about
the cooperative use of the operations.

teamact on

operation wsmllity mode Toles

nammg parallelism

/ dlrec1 |nd|rect 0 1 ‘n explicit implicit
item synchronlsm
/ \ tlme op. -granulanty notification
/ \ immediate fine coarse describing
no constraints duplicating
specification of teamaction context
"standard"” item __.®

involved E— s _@

Fig. 3.4: Teamaction context of an item

170

[Riid91] explains how these choices cover all kinds of CSCW-interactions available
in all CSCW applications known from the literature. The more in-depth discussion
in this reference brings evidence to the advantages of the items-oriented cooperation
approach over other ones known from the literature. But even from the brief
discussion in this section, it should become clear that our approach is neither limited
to a specific subset of possible cooperative applications nor concentrates on the
CSCW aspects of software engineering alone (such as the [HBP93]), and that it is
superiour to class library approaches such as GroupKit [RoG92].

Through the use of subject_roles, a teamaction can refer to an activity without
determining whether it is carried out manually or automatic. This way, a workflow
can remain unchanged while individual activities are automated in an enterprise.

3.7 Hypertext support

The item categories ‘link” and ‘navigation’ form the basis for hypertext support in
the Items system, A serious drawback of existing hypertext systems lies in a lack of
typing support. While every hypertext can be interpreted as a graph consisting of
‘nodes’ and ‘links’, not all hypertext systems include a sophisticated (e.g., object-
oriented) typing concept for such nodes and links; virtually no hypertext system
supports typing for the hypertext networks (graphs) made up from nodes and links.

Typing support for nodes and links is relatively easy to achieve. In items (where
pre-defined types are categories), every sub-category of the subject category can be
handled as a ‘node type’; every link type must be a sub-category of the relation cat-
egory and must have the ‘link’ category as one of its super-categories,

Typing support for hypertext networks, however, is more difficult. The central
question is: ‘what is a network type’ (in other words, a ‘class’ or ‘family’ of hyper-
text networks)? In items, we use an approach which was first discussed in the con-
text of a predecessor project [Miih91]. A type of a hypertext network is thereby
described as a navigation category, based on a visual graph grammar depiction as
indicated in fig. 3.5,

.) Course Topic

Instructional
Goal

Introduction Pre- Test Post-Test

Fig. 3.5. Example hypertext network type

In fig. 3.5, the ‘construction’ part of a network type (i.e., navigation category) defi-

171

nition is shown. This part describes the rules which determine the graph structure
of any hypertext of the respective category. The figure illustrates an example taken
from instructional software. The link in the upper left of the figure is marked with
an interval [1..°]; this means that at least 1 link of the given type has to originat
from the subject ‘instructional goal’, but there may be as many such links (with the
same source node) as desired. In the lower right of the picture, a loop with interval
[1..12] is drawn. This shows that in a hypertext of the given category, as many as
12 nodes of type ‘Module’ may exist in a row, interconnected by the link type indi-
cated in the loop. Apart from the construction rules mentioned, further ones exist of
course, as described in [Miih91].

Apart from ‘construction’ part as just described, a navagation category consists
of a ‘navigation’ part which describs rules and constraints that determine the way
in which an individual thread traverses a network of the category described. The
experiences with predecessor projects of items have shown that by programming
navigation rules in the context of a hypertext category instead of re-programming it
for every instance, considerable gains in re-usability and understandability of
hypertext-based programs can be made.

4 Summary

We presented an overview of a proposed modeling / programming framework for
cooperative media-integrated applications, called Items. The proposal is based on
the experience gained with two predecessor frameworks and a sample CMA. It is
embedded into a suite of several high-speed networking projects which provide the
testbed for our work.

The work described is not completed, but the major conceptual elements have
been tested in smaller individual prototype versions of the framework.

References

[Ach91] Achauer, B.:
Distribution in Trellis/DOWL.
Proc. TOOLS 5, Santa Barbara, USA, July 1991, pp. 49 - 59
[ADH93] Altenhofen, M, Dittrich, J., Hammerschmidt, R., et al.:
The BERKOM Multimedia Collaboration Service
Proc. ACM Multimedia ‘93, 1.-6.8.1993, Anaheim, CA
[Bla92] Blakowski, G.:
High Level Services for Distrib. Multimedia Applications
Based on Application Media and Environment Descriptions.
Proc. ACSC-15, Hobart, Australia, January 1992,
Australian COmputer Science Communications, 14(1), 1992, pp. 93-109

172

[BHL92] Blakowski, B., Hiibel, J., Langrehr, U., Miihlhduser, M.:
Tool Support for the Synchronization and Presentation of Distributed Multimedia
Butterworth J1. on Computer Communications, December 1992. pp. 611 - 618
[GZH90] Gerteis, W., Zeidler, Ch., Heuser, L., Miihlhduser, M.:
DOCASE: A Development Environment & Design Language f. Distrib. 0-O
Applications. Proc. TOOLS Pacific '90, Sydney, Australia, Nov. 1990, pp. 298 - 312
[HBP93] Hill, R., Brinck, T., Patterson, 1., et al.
The Rendezvous Language and Architecture
CACM 36 (1), Jan. 1993, pp. 62-67
[Heu90] Heuser, L.:
Processes in Distributed Object-Oriented Applications.
Proc. Tool'90, Karlsruhe, Germany, Nov. 1990, pp. 281 - 290
[Kat93] Katz, S.:
A Superimposition Control Construct for Distributed Systems
ACM ToPLaS 15 (2), April 1993, pp. 337 - 356
[MGH93] Mihlhiuser, M., Gerteis, W., Heuser, L.:
DOCASE - A Methodic Approach to Distributed Object-Oriented Programming
to appear in CACM 36 (10), Sept. 1993
[Miih91] Mihlhiuser, M.:
Hypermedia and Navigation as a Basis for Authoring / Leamning Environments
AACE JL. of Educational Multimedia and Hypermedia, Vol 1, No. 1, 1991, pp. 51 - 64
[MiiS92] Miihlhduser, M., Schaper, J.:
Project Nestor: New Approaches to Cooperative Multimedia Authoring / Learning
in: I. Tomek (Ed.): Computer Assisted Learning, Springer Verlag, Berlin etc. 1992,
pp. 453 - 465
[Pot89] Potts, C.:
Recording the Reasons for Design Decisions.
Proc. IEEE 11th Int. Conf. on SW Engineering, Singapore, May 1989, pp. 418 - 427
[RoG92] Roseman, M., Greenberg, S.:
GroupKit: A Groupware Toolkit for Building Real-Time Conference Applications
Proc. CSCW 92.
[Riid91] Riidebusch, T.:
Development and Runtime Support for Collaborative Applications.
in: H.J. Bullinger: Human Aspects in Computing. Elsevier Science Publishers
Amsterdam 1991, pp. 1128 - 1132
[Sch90] Schill, A.:
Mobility Control in Distributed Object-Oriented Applications,
Proc. IEEE Intl. Conf. on Computers and Communications,
Phoenix, Az, March 1989, pp. 395-401.
[ScG90] Schill, A.., Gerteis, W.:
Communication Schedules: An N-Party Communication Abstraction Mechanism for
Distrib. Applications. Proc. 10th ICCC '90 (Nov. 1990, New Delhi, India), pp. 643-651.

