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Design Patterns
for Interactive
Musical Systems

o

We propose Musical
Design Patterns as an
approach to
developing
interactive, music-
oriented systems for
use as novel media
content. Such
development
integrates three key
aspects: user
interface design,
modeling media
semantics, and
application software
engineering (content
development). We
will support our
claims with examples
from WorldBeat, an
award-winning
interactive music
exhibit on display at
various technology
museums.

Jan Borchers and Max Miihlhduser
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s Xerox Palo Alto Research Center
(PARC) researcher and Apple fellow
Alan Kay put it, technologists do not
invent new media, but merely new
media technologies, and it is the creative authors
and content creators who define new media based
on those technologies. This is why it usually takes
a long time from the invention of a new media
technology to the actual emergence of new media
types. For example, it took several hundred years
from the invention of the printing press to
achieve our variety of print media today. It also
implies that we're still in the infancy of exploit-
ing those networked multimedia technologies
people like to call "new media”—most content
presented with those new technologies still uses
document metaphors from the printing age.

Interactivity and semantics of new media

One encompassing principle, however, has
become a fundamental feature of new media:
interactivity. From “interactive” TV to virtual real-
ity environments to telecooperative applications,
it is the possibility of interacting with such sys-
tems—or with other pecple through them—in
formerly unknown, direct ways that makes these
sCenarios so attractive.

While the multimedia capabilities of current
consumer systems compared to their respective
features 10 or 15 vears ago might fascinate us,
their abilities to let users interact with that data in
media-appropriate ways haven’t exactly kept up—
they're practically nonexistent. Of course, multi-

1 media systems have evolved from the “device

handle” (for example, offering VCR-like controls
for digital video access) to the “data handle” par-
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adigm. Currently, multimedia systems aim to
establish a “contents handle” level of abstraction
in the contents model and user interface,
Standards being developed to deal with the
semantic modeling aspects of this goal include the
Moving Picures Expert Group's MPEG-4 for
encoding multiple objects within an audio-visual
scene and MPEG-7 for describing multimedia
information. To create this semantic information,
many ambitious research projects currently recon-
struct it from digitized data by syntactic analysis,
pattern matching, and so on.

However, as research publications in this field
indicate, rebuilding semantic information from
digital data proves difficult and less satisfactory
than storing content information—that is, seman-
tics—at the time of media creation. Moreover,
approaches such as syntactic analysis and pattern
matching still do not reflect the central role of
interaction in future systems. Given a sufficiently
pessimistic view, this situation could well be seen
as the beginning of a new software cCrisis.

It is not just “human-computer interaction
people” who see things this way. Theoretical com-
puter scientist Peter Wegner' even predicts a par-
adigm shift in computer science as a whole: The
algorithm—as the one unifying concept that basi-
cally defines computer science—will be replaced
by the notion of interaction.

Development needs support

If the computer science community wants td
support this paradigm shift, what must we do?
Clearly, the key lies in methodical, architectural,
and tool-level support for designers and develop-
ers of “new media” applications. This means that
the following three domains, which often coexist,
must be supported by a more unified approach:

Semantic modeling. Without a rich, more
abstract model of multimedia information (music
provides the perfect example), any attempt at sup-
plying useful and meaningful user interface
metaphors will be pointless. The interface cannot
represent multimedia data in a semantically rich
way if those semantics—that is, the content struc-
ture and meaning of the data—are not model=d
within the system. We need a model that repre-
sents this semantic information, while at the same
time incorporating the special demands of inter-
action and content creation.

Software engineering. Creating interactive
multimedia applications is exponentially more
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complicated than developing traditional, less
interactive software. We will need to find an
approach that helps developers think about these
new types of interactive, networked multimedia
systems in a way that suits the nature of this new
domain. Object orientation offers a starting point,
but we will need to find a larger scale model than
that. Otherwise, its architectural, static approach
leads even further away from the task-oriented
models of user interface design.

Human-computer interaction (HCI). If we
take the fundamental role of interaction serious-
ly, then it must be a central part of our approach
and not an add-on that “needs to be done to make
the system look nice.” That's not to say that user
interface and application-internal functions
should be thrown together. However, we want the
HCI and software engineering sides of a project to
work together seamlessly, contrary to today's
practice. Although studies repeatedly indicate that
about 50 percent of the implementation work in
software projects go into the user interface,” those
two camps hardly combined efforts until
1994when they met in a first joint workshop.?
This workshop stimulated, for instance, a
modality-abstracting user interface toolkit and
design method, which tightly integrates expertise
from both disciplines.*

Before we present our approach to solving
these problems, we want to give an overview of
how the intersection of our two major issues—
music and human-computer interaction—has
been covered in the past.

Music as interactive medium

Music and human-computer interaction can
combine in two fundamental ways. First, com-
puter systems can be enhanced by interactive
techniques that use music as a communication
medium. Second, a computer system that handles
musical data can be improved by finding new and
more appropriate interaction methods for it than
offered by a computer keyboard and mouse.

A number of research projects have studied the
first alternative, although they just scratched the
surface of its possibilities. The second alternative
we will have to address in our context. Probably
because of the music-specific application domain,
even less computer science-oriented research has
gone into this field up to now.

As an example, Rowe® gives a good overview of
interactive music systems and classifies existing
systems according to three dimensions. He dis-
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that changes of behav-
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input are the hallmark Figure 1. The

of interactive music systems, his work leaves out
actual user interface design systems. Paradiso’s®
recent overview addresses this subject in more
detail, albeit focused on the hardware level.
Nevertheless, both alternatives we initially iden-
tified require “music-appropriate” interaction
metaphors, whether they actually use sound to
interact or other adequate metaphors (like con-
ducting). Therefore, it's helpful to structure a survey
of music in interaction by two dimensions typical
of the HCI domain (see Figure 1): first, by the direc-
tion in which it is used (input or output), and sec-
ond, by the type of information transmitted
(program control information or application data).

Musical data output

Playing back musical data in auditory form
comes as a standard feature on modern personal
computers. [t's used not only in music applica-
tions like software sequencers, but also in games
and multimedia "edutainment” software products
(see the sidebar “From Digitized Audio to MIDI,
and Back").

“Unmusical” domains have shown promising

)| L ‘I’I
devices.”

dimensions of using
music as an interactive
rredivrn.

cent velocity using a trumpet sound.” The sound generator uses stored audio
samples or synthesizing circuitry to create the corresponding sound.
Mowadays, personal computers have become powerful enough to do this
sound generation in software, which has lead to software sequencers that can
convert digitized audio data into an (approximate) MIDI representation and
back, effectively blurring the boundaries between MIDI and digitized audio.
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results with music as the output medium for sci-
entific data and even algorithm audiolization.
Alty et al.” give a brief overview of their own and
related work elsewhere.

Musical control output

The use of sound to inform the user about pro-
gram states, to create feedback on commands, and
50 on, have been studied in more detail. Examples
include Earcons, auditory icons introduced by
Blattner, Sumikawa, and Greenberg,® and the
SonicFinder, which uses audio signals for many
common operations on the desktop.® Actual
music, however, has rarely been used to commu-
nicate control information. Alty et al.” are work-
ing on Audiograph, a translator from graphical to
auditory user interfaces for the blind.

One factor that limits the usefulness of audio
output is that audio remains an undirected medi-
um, contrary to visual media. This leads to
unwanted noise whenever several people use such
systemns while working in a single environment,
like a shared office. Nevertheless, unobtrusive and
mutable sound effects have made their way into
today’s standard desktops (for example, a page-
turning noise when reducing a window to its title-
bar under the Macintosh operating system).

Musical data input

(Getting musical data Into music applications is
also an established feature, either by recording
digital audio or by capturing MIDI messages cre-
ated on an electronic instrument with a MIDI
interface. People who cannot play a classical
instrument, however, have few ways of bringing
their creative musical potential into the computer.
Fortunately, many alternative devices—like the
infrared batons used by our WorldBeat exhibit
{discussed later)—developed in recent years can
create MIDI data from almost any type of input.
However, those systems are mostly far from being
mass-market tools. Moreover, they require intelli-
gent support on the software side to help the user
create meaningful musical material.

At this point our approach (and thus, the cen-
tral topic of this article) comes into focus. We
strongly believe that new approaches to musical
data input make a fascinating and promising field,
for a number of reasons:

1. Musical data input represents musical perfor-
mance, or the “live” part of music—the bridge
between locked-room composition and mere-
ly consumptive “couch-potato” listening.

2. Computer-based interaction can open a path
to new domains of interactive performance in
terms of formerly locked-out performers
{musical novices or handicapped people), for-
mertly unfeasible set-ups (participants distrib-
uted across the Internet), or formerly
unfeasible contents (giving the performer con-
trol over unattained levels of complexity).

3. As discussed, such interactive applications are
likely to be one of the new, interactive
“media” that the Internet and multimedia
technologies will bring forth.

Accordingly, we address this problem through
our own development efforts described here. One
WorldBeat component, for example, lets users hum
into a microphone to find the corresponding song
in a database—a perfect example of using musical
data input for a musical task {(and, incidentally, one
of the “visions" that the MPEG-7 group mentions
in their standardization document).

Musical control input

In general, music is not a very appropriate
medium to control program functions. After all,
it requires the user to create musical input that
will be interpreted as a command. Finding an
intuitive mapping for the average user between
musical structures and, for example, commands
of a text editor will be difficult. Moreover, since
most commands require a precise input, hum-
ming them would lead to the same problems as
speech input does. The input must be classified
first, and misinterpretation can be critical.

However, for some domains, especially music,
music still makes sense as a control input channel.
Most software sequencers, for example, can be
triggered by a certain incoming MIDI note to start
playing a prerecorded sequence, or any incoming
MIDI message can start its MIDI recording func-
tion. This lets musicians control basic software
functions from their piano keyboard without
operating the console keyboard simultaneously.
Such instruments also deliver more discrete
(pitch) values, which makes command interpre-
tation easier and more reliable.

WorldBeat: An example

In the remainder of this article, we will fre-
quently refer to the WorldBeat system, an inter-
active computer-based exhibit about computers
and music. At this point, we want to provide 2
brief overview of the system.




Our research group designed and developed
the WorldBeat exhibit to show how computers
can be used to interact with music in new ways.
It's on permanent display at the Ars Electronica
Center (AEC), a "technology museum of the
future” in Linz, Austria, and is one of the muse-
um's most successful exhibits. WorldBeat received
the 1998 Multimedia Transfer Award as one of
nine winners from 160 international contestants.

The WorldBeat system puts our idea of Musical
Design Patterns into practice. The system's most
interesting feature is certainly its user interface:
The complete exhibit is controlled using a pair of
infrared batons (produced by Buchla and
Associates, see Figure 2).

To use the WorldBeat exhibit, a visitor stands
in front of the wall-mounted screen and controls
the onscreen curser by pointing with the right
baton (see Figure 3). This metaphor resembles that
of a laser pointer. To select, say, a menu item on
the screen, the user presses the action button on
the baton. Once the user has reached one of
WorldBeat's components, the screen explains
how to use the batons in musical interaction.
When finished with that component, the user can
use the baton to navigate to a different part of
WorldBeat. This dialog technique makes switch-
ing between navigational and musical input very
intuitive. The user interface is consistent, easy to
learn, and adequate for the media-type music.

WaorldBeat consists of several components that
let visitors interact with music in various ways,
such as

I Joy sticks. Visitors can play numerous virtual
instruments that simulate existing or imagi-
nary instruments. The playing metaphor (mal-
let-like, strumming, and so on) to use with the
batons depends on the instrument selected.

I Virtual baton, Visitors can conduct a prerecord-
ed MIDI piece played back by the computer,
influencing its tempo and dynamics. The sys-
tem, based on Lee, Garnett, and Wessel's
work, ™ shows how humans can make comput-
ers adapt to their own human requirements
and metaphors when interacting with them
about music.

B Musical memory. In an interactive educational
game, visitors can try to recognize instruments

by their sound alone.

I Net music. Visitors can exchange MIDI compo-

sitions or even play together with others
around the world via the Internet. This sce-
nario shows the use of networks for distributed
learning. It will be substantially extended in
the future (see the section “Current work").

1 Query by humming. Visitors can hum part of a
tune to find the corresponding plece in a
database.

1 Musical Design Pattersis. Visitors can “customize”
the style of a generated blues band, and even im-
provise to this accompaniment, without having
to fear playing the wrong notes.

We will look at some of these components
(especially the computer-aided improvisation, of
course) in more detail in our description of sample
Musical Design Patterns, The baton interface and
general design rules for interactive exhibits appear
elsewhere.!!

The Musical Design Patterns approach
Here we'll explain why object orientation offers
a suitable paradigm for developing interactive musi-
cal systems. Then we'll look at the higher level soft-
ware engineering concept of Design Patterns, and
finally carry this idea over to our problem domain.

Figure 2. The infrared
batons used in the
WorldBeat exhibit.

Figure 3. A visitor using
the WorldBeat exhibit
in the Ars Electronica

] Cernter.
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Musical objects

A key strength of object orientation is the rel-
atively straightforward path from real-world or
conceptual objects to program code in the form of
software objects. This makes object orientation a
natural approach for representing music in a com-
puter system today. When people think or talk
about music in a constructive, technical, or sys-
tematic discourse, they primarily deal with musi-
cal objects.

On a low level of abstraction, such objects may
be notes and rests. But more abstract concepts
emerge by composing these simple objects, either
horizontally in time (note sequences become a
melody) or vertically in voices (simultaneous
notes become chords). Phrases and choruses
extend the temporal dimension, while timbres
and instruments add to the voice dimension, until
they comprise a whole musical piece as represent-
ed in a score.

Even when the underlying programming par-
adigm differs, scientists have often adopted the
object-oriented approach to model those multiple
levels of abstraction (as Haus and Sametti did with
“Musical Objects” in their Petri-Net-based
ScoreSynth system™ or Hudak and Berger'® at Yale
University with object nomenclature in their
functional Haskore project).

Furthermore, we're looking for an approach
that incorporates aspects of interactivity as well as
software engineering and modeling—objects
interacting via messages suit this approach excep-
tionally well. That's why practically all modern
user interface toolkits are implemented as object-
oriented architectures—even when the major
application programming interface uses a proce-
dural language like C.

However, just as object orientation alone does
not necessarily improve the quality of software, an
object-oriented approach to modeling musical con-
cepts does not clearly specify what object classes
should be defined and how they should interact in
order to handle specific issues of interactive musical
systems. We use Design Patterns to build just such
a problem-solving vocabulary of concepts.

Design patterns in software engineering
Architect Christopher Alexander'® originally
described the concept of pattern languages to cre-
ate a vocabulary of proven solutions for recurring
urban architecture design problems. Patterns first
entered the software development community in
1987, when Tektronix software engineers Ward

Cunningham and Kent Beck successfully applied

Alexander's ideas to create a small pattern lan-
guage for novice Smalltalk software designers.
They reported their findings at an Object-Orient-
ed Programming Systems, Languages, and Appli-
cations {OOPSLA) conference workshop that year.

Software design patterns became popular when
Gamma et al. presented their pattern introduction
and catalog in 1994."* They defined Design
Patterns as an approach to capture software engi-
neering experience, based on the object-oriented
design paradigm. Each pattern describes a recur-
ring problem of object-oriented software design
and offers an abstract solution to it in terms of
objects and interfaces between them. In general,
a Design Pattern consists of five major parts:

1 The name of the pattern lets developers inden-
tify and talk about this concept easily,

I The problem context states when to apply this
pattern.

1 The solution describes the elements and their
relationships to solve the problem.

I The consequences discuss advantages and disad-
vantages of this solution to help developers
decide whether it suits their specific purpose.

I The sample uses show how this pattern has
been applied successfully in existing systems.

Let's look at an example of using design pat-
terns. Since our approach tries to address not only
software engineering and semantic modeling but
also HCI concerns, our example comes from the
world of user interface programming.

One of the intriguing concepts introduced by
Smalltalk is the Model/View/Controller (MVC)
paradigm that separates the user interface and
application domain objects from each other.
Model objects implement concepts of the appli-
cation domain, View objects visualize them in the
user interface, and Controller objects capture user
input for them, managing the interaction. This
partitions the object world of an application into
these three distinct subsets, making it easier 0
exchange, for example, the graphical appearance
(View) of a piece of software without having to
modify its Model or Controller parts.

Most later user interface toolkits, like the
recently introduced Swing toolkit (part of the Java
Foundation Classes), slightly redefine the parti-
tion. Since View and Controller are often to0




closely related to decouple, they combine into one
partition, reflecting the separation into applica-
tion-specific and user interface code,

MNevertheless, as Gamma et al. observed, the
MVC approach serves as an application of more
general concepts, examples of Design Patterns: their
Observer pattern captures the concept of allowing
different Views to exist simultaneously for a single
Model and the principle of notifying them all when
the Model changes. Gamma et al."s Compaosite pat-
tern describes how Views can be nested, yet still be
treated like a single View, and their Strategy pattern
reflects the approach to exchange Controllers at any
time to activate different algorithms, or strategies,
when reacting to user input.

A more detziled discussion of Design Patterns
in software engineering exceeds the scope of this
article; however, you should now have a suffi-
ciently clear idea of their basic concepts to transfer
them to interactive musical svstems.

Musical Design Patterns

Recently, patterns have been formulated for
other domains, such as software project manage-
ment. Those “organizational” patterns capture
best practices in managing all aspects of the soft-
ware engineering process. Also, Gamma et al.
admit that domain-specific patterns must be cre-
ated. With Musical Design Patterns, we now take
this idea back from pure software engineering into
the interdisciplinary field of designing object-ori-
ented, interactive, and computer-based musical
systems. We define a Musical Design Pattern as
one that describes how to solve a certain problem
when designing computer-based, interactive
music-oriented systems. It consists of

1 a name that captures the goal of the pattern,

I a problem staterment describing a certain abstract
musical feature or concept that a system
should implement,

1 a solution as a set of objects taking over differ-
ent roles and a set of relations between those
objects,

I the consequences that give hints on when to
apply this pattern and how it may influence an
overall design, and

1 some sample uses that show how the pattern
has been applied in existing computer-based
interactive music systems.

It's important to see that a Musical Design
Pattern should not just represent a single, con-
crete musical concept (like a certain style to play
a bass line in jazz music). Instead, it should be an
abstraction from this level and capture the gener-
al problem to reflect a certain aspect of musical
composition, performance, and improvisation in
a system design so that applying this pattern cre-
ates specific implementations for various stylistic
and technical facets of this concept.

Sample patterns

To give a better understanding of Musical
Design Patterns, we'll present two examples. The
first pattern, MetricTransformer, looks at the
rhythmic dimension of music. It captures com-
meon structures of small changes in rhythm that
characterize real, performed music. The second
pattern, ImprovisationHelper, deals with the har-
monic dimension. [t models different variations
of subtle computer support for both novice and
experienced human performers who play togeth-
er with just the computer, via the computer, or
with other people.

While a full discussion of these patterns with
all implementation details would exceed the
scope of this article, we'll present the key con-
cepts, components, and sample uses of each pat-
tern, and evaluate their usefulness in our three
problem domains—semantic modeling, software
engineering, and HCI.

MetricTransformer pattern

This pattern addresses the thythmic dimension
of music. We'll present it according to our defini-
tion of Musical Design Patterns.

Problem. Musical performance adds countless
subtle variations to the lifeless representation of a
piece in a musical score or simple MIDI file, While
these variations concern all musical dimensions—
harmony, melody, and rhythm—the one-
dimensionality of time makes rhythm the most
accessible concept for computer modeling.

This pattern aims to describe which small tem-
poral changes within each beat make musical per-
formance more human and vivid. Examples of
these changes are the groove in jazz music (see
below), the statistical deviations from the exact
beat timing typical of natural performance, or the
capability of a real band to follow a human
rhythm even if not uniformly spaced.

Solution. The general approach to modeling
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this behavior builds on the collaboration of six
objects (see Figure 4}):

B The Creator supplies the musical “raw materi-
al,” that is, the score to be played.

1 The Metronome supplies the “raw rhythm,”
that is, the uniform beat at the general tempo
of the piece,

1 The Modulator defines variations of any basic
rhythm in terms of the deviations that form
rhythmic “spacing.” The modulation can be
based on fixed, random, or human deviations.
The semantic concept of metric transformation
is modeled here. In cases where gradual tempo
changes also affect the future tempo as a
whole, the Modulator can feed these changes
back to the Metronome.

I The Customizer lets the user change the
Modulator's parameters in real time. It defines
the interaction metaphor when varying the
metric transformation.

I The Timer takes the basic beat from the
Metronome and modifies it according to the
Modulator's input. Its output is the modulated
beat that this pattern is supposed to model.

I The Plaver takes the musical material from the
Creator and the modulated beat from the
Timer. It outputs the material in this rhythmic
form, still in the shape of musical symbalic
events (comparable to notes).

Some of these objects contain architectural fea-
tures that also have been identified as general pat-
terns in the literature. For example, introducing
the dedicated Modulator object shields the other
objects from changes in the method used to vary
the timing. This concept follows Gamma et al.’s
Strategy design pattern® mentioned earlier,

Consequences. [f the Modulator is built to
move some notes back in time (that is, to an ear-
lier point than the t, scheduled by the
Metronome) by up to &, then the time of the
next beat and the material to play there must be
known in advance (at the latest at time t—d,.,).
Thus, if the musical input arrives live from a
human performer, the system cannot apply this
pattern and still deliver its part simultaneously to
the input.

Sample uses. The MetricTransformer pattern
can be used to model different aspects of timing
deviations within a beat from a fixed, uniform
tempo as written in a score. The so-called groove
in jazz is a good example to apply the
MetricTransformer: Often, a band's rhythm sec-
tion shifts the intermediate beat back in time in a
triolic fashion (that is, by one third of its length)
to make the music “swing.” For example, if a
drummer's score contains a sequence of eighth
notes to play on the Hi-Hat, the drummer will
interpret them roughly as an alternating sequence
of 2 + 1 triolic eighth notes (which really have a
length of twelfth notes) to create the swing feel-
ing. Comparative studies of jazz recordings show
that most bands actually have their own specific
groove timing, helping us recognize the band.

The Creator can use prerecorded musical mate-
rial or quantized (metrically straightened) input
from a performer to add groove. The Modulator
can then model this concept with a delay algo-
rithmn. The delay can be defined as the percentage
of time between two beats at which the interme-
diate beat occurs. For example, 50 percent equals
a straight, march-like style, and 67 percent results
in a triolic swing. Timings behind that create an
even more “laid-back” style used in slow blues,
while timings less than 50 percent give an unusu-
al, driving feeling in the music. The Customizer
acts as a slider to let users choose this percentage
while the music plays, so they can hear the results
immediately. Our WorldBeat system, for example,
features such a slider onscreen. Current electronic
instruments like keyboards, on the other hand, do
not have anything similar to offer.




Simply delaying all note events that are sched-
uled for the time of the intermediate beat and
afterwards by a fixed amount, however, is unsat-
isfying because it lowers the average tempo. Plus,
a note that ends shortly before the intermediate
beat, for example, remains unchanged, creating a
noticeably larger break between it and the next
delayed note. The correct approach is to expand
{slow down) the complete time line linearly up to
the intermediate beat and compress it (speed it
up) from the intermediate on. Spreading out the
delay over the entire beat this way, even scores
with note events that arrive slightly before the
intermediate beat—or at any other moment—will
sound correct.

The MetricTransformer could also model the
jitter, that is, the slight unsteadiness in timing
inherent to natural musical performance.
Computer-generated rhythms otherwise sound
very artificial and lifeless. The Modulator can cre-
ate this jitter using a statistical standard distribu-
tion of time deviations from the standard beat,
although more sophisticated models are possible.
The Customizer can offer users one or more slid-
ers to change the distribution parameters interac-
tively. In this case, some notes would be moved to
an earlier point, so simultaneous real-time input
(from the Metronome) and output (by the Player
to the Realizer) are not possible, as previously
discussed.

Finally, if the system does not use its internal
timing but follows the human rhythm of a con-
ductor or band leader, then the Modulator would
be implemented as a component that detects the
beats in some human input. The Metronome
would just define the basic tempo at the begin-
ning. The Customizer would offer settings to
users, like the speed with which the computer
adjusts to a sudden change of tempo by the con-
ductor, from “immediately” (possibly dropping
notes in case of a tempo increase) to “gradually”
(spreading out the change over an adjustable time
interval). WorldBeat offers a similar scenario in its
Virtual Baton component where users can control
tempo and dynamics of a piece by conducting
with an infrared baton.

Evaluation. From the semantic modeling per-
spective, the MetricTransformer pattern offers an
approach to capture various types of human fac-
tors in rhythmical performance in a single frame-
work. It can represent “knowledge” about how to
enrich the concept of thythm in a musical system,
using mathematical definitions as well as external

human input to describe subtle deviations from a
uniform beat.

For software engineering, the pattern shows
how to design an interactive music system that
deals with this richer concept of rhythm in an
integrated way. The model is concentrated and
hidden inside the Modulator object, making it
easy to add new related aspects of rhythmic varia-
tion to a system. Data input can be taken from a
stored musical representation or a live perfor-
mance using appropriate electronic instrument
interfaces. This design can represent “interactive
media”—at all necessary points, algorithmically
generated, stored, or spontaneous human input
sources can be plugged in.

Finally, this pattern addresses HCI concerns
because the Customizer, while a separate object
for architectural clarity, is nevertheless closely
connected to the Modulator (the concept repre-
sentation). This allows for the implementation of
richer, media-adequate interface metaphors so
that users can interact with the rhythmic concepts
in a more meaningful way.

ImprovisationHelper pattern
This second pattern example will look at the
harmonic dimension of music.

Problem. An interactive music system should
not mimic traditional instruments, but offer new
conceptual instruments with semantically rich,
interactive features not found in existing equip-
ment. One of the most interesting new features
possible is intelligent player support—the system
lets users play the creative part, but supports them
with its musical knowledge, correcting small
errors automatically.

However, to avoid stifling creativity, the sys-
tem should not influence or “correct” the player
in more than one musical dimension. Since
melodic or especially rhythmic corrections quick-
ly lead to a loss of perceived immediacy for the
player, the system should focus on a harmonic
improvisation support. In other words, it should
let users play notes rhythmically free (play notes
whenever they wish) and melodically free (play
high or low notes, runs, chords, and so on), but
“fine-tune” the notes played so that they fit into
the current harmonic context of the
accompaniment.

Such improvisation support must be done care-
fully to not limit users’ creative freedom. Ideally, it
would adapt to their level of expertise.
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Figure 5. Objects and
messages in the
ImprovisationHelper
pattern.
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Solution. The ImprovisationHelper pattern
consists of the following five objects (see Figure 5):

1 The Accompanist supplies the musical accom-
paniment, which can come from different
sources (see sample uses).

§ The HarmonicAnalyzer constantly determines
the current harmonic context (base and modus)
delivered by the Accompanist, in real time.

B The InputAnalyzer offers users a musical inter-
face to play their part in real time and reads
their input, such as an improvisation to the
accompaniment.

I The Corrector takes the “raw” musical input
from the user and the current harmonic situa-
tion from the HarmonicAnalyzer, and adjusts
the user input so that it fits into this harmon-
ic context. The Corrector's output is a har-
monically checked version of the original
material played by the user.

1 The SupportAdaptor offers users a controller to
decide how much improvisation support they
want. Experienced players can lower this to get
more creative freedom (and responsibility for
any wrong notes, of course).

Consequences. The pattern makes a system
simulate an “intelligent instrument.” As such,
interactivity proves especially crucial in this pat-
tern. If the delay between musical user input and
corrected system output becomes noticeable (more
than about 150 ms), users will lose the feeling of
playing an instrument and start thinking that they
merely control some artificial music generator.

Also, the user interface should be designed so
that the input requested from users is not too
exact, but rather slightly fuzezy (for example, the
systemn should not demand input from an 88-key

User data input User control input

Input.ﬁ.nalyzer SupportAdaptor

Accompaniment Raw |rnprmr|satmn Parameter settings
Harmomr:ﬁ.n al}rzer Cnrrecr.cr

Current
harmony

Checked rmprm::atlnn

professional piano keyboard). This helps make the
system's corrections less noticeable.

Sample uses. In the WorldBeat system, we
implemented such an improvisation support in the
Musical Design Patterns component. The Accom-
panist supplies the computer-generated accompa-
niment of a blues band (whose groove can be
adjusted using other patterns like the MetricTrans-
former described above). The HarmonicAnalyzer
uses a root-parsing algorithm as described in stan-
dard music literature to determine the current
chord (say, Fm’, the F minor 7th chord) in real
time. The InputAnalyzer offers a xylophone-like
playing metaphor—users make downbeat gestures
with the two infrared batons of the WorldBeat sys-
tem in their hands. Gesture velocity determines
volume, while horizontal position determines
pitch. The Corrector takes this input and maps it to
the nearest harmonically sound note in terms of
the current accompaniment chord determined by
the HarmonicAnalyzer.

The result is quite fascinating. People who have
never before played an instrument can walk up t
the system and start improvising to a blues
band—without playing wrong notes. This makes
the Musical Design Patterns component very
attractive and popular among visitors who use the
WorldBeat system. Experienced musicians can
adjust the support to either a moderately hard-to-
play chromatic virtual xylophone using the
batons (one octave), or they can use a full-scalz
electronic piano keyboard that can be added to
the system at any time (seven octaves),

The ImprovisationHelper pattern has also been
applied independently in MusiKalscope,' a sys-
tem that lets users improvise to a be-bop style of
jazz music and control graphical feedback simul-
taneously. Users play a virtual drum pad using
spatial trackers attached to their arms. The RhyMe
subsytem analyzes the input and maps it to notes
of a matching scale, depending on the accompa-
niment's current mode. This mode, however, is
determined in a separate a priori analysis process
that limits the system’s flexibility in terms of real-
time accompaniment input. The system also lacks
some reactiveness due to the input technalogy
and metaphors used. Rowe® uses a similar
approach to define a "Harmonizer” module.

Another application of the Improvisation-
Helper pattern is our NetMusic scenario (see the
section “Current work”). Here, humans generate
the accompaniment, rather than a computer. The
real-time HarmonicAnalyzer ensures that even



this situation, where the harmonic progressions
may not be known beforehand, can be covered
using the ImprovisationHelper pattern.

Evaluation. For semantic modeling, this pat-
tern is very valuable, It shows how a system can
abstract from single notes and let users deal with
higher level concepts like harmonic progressions,
scales, and so on.

For software engineering, this pattern demon-
strates an interesting design: the HarmonicAna-
lyzer provides a class that does not depend on
prerecorded data to accomplish its task, This
means that the system can use stored or live
accompaniment if this pattern is applied. Again,
this is a fundamental accomplishment necessary
for software architectures of interactive new
media—the data source, whether stored, comput-
ed, or provided In real time by a human, can be
plugged into the system as desired.

HCI finally is rewarded with an exceptionally
intriguing user interface metaphor that creates the
impression of an intelligent instrument. Users can
actually try out and influence the high-level
semantic concepts inside the system, adjusting
parameters like the level of improvisation support,
and then send the data (their own improvisation)
into the system to hear the results.

Current work

Currently, we're working on three aspects of
extending the Musical Design Patterns approach.
First, we're looking for additional applications of
our existing patterns to further prove their gener-
al validity. This includes applying them to com-
pletely different musical styles. For example, it
will be interesting to see how the MetricTrans-
former can model subtle thythmic variations—a
crucial part of musical expressiveness in perfor-
mance—in classical music. The Improvisation-
Helper is also applied to other styles, such as
helping users play a classical minuet.

The second direction of research tries to iden-
tify new patterns (the melodic dimension has
been neglected in our patterns so far). We're
developing a pattern that may capture melodic
concepts like musical ornaments (sliding notes or
appogiatura in jazz, trills in classical music, and so
on). With respect to novel interactive media, user
interaction might, for instance, adjust how
intensely these effects are added to a performance.

Possibly the single most important extension
under way, however, is integrating our existing
patterns into a concept of distributed musical col-

laboration, which will become the next version of
our NetMusic WorldBeat component. Extensive
theoretical work in this area done already at our
Telecooperation department has helped us design
a collaborative concept that will circumvent the
delay problems inherent in simultaneous real-
time cooperative playing via the Internet.

Each participant takes over an instrument, as
in a real band or orchestra, and the system dis-
tributes basic information about the piece to be
created (comparable to a lead sheet). Each player
records their own performance locally, which is
then sent automatically as a “first take” to the oth-
ers. That way, all players get a complete first ver-
sion of the piece with all instruments. Next, each
participant can improve and adapt their perfor-
mance and have it redistributed, until this itera-
tive process leads to the final version of the piece.
Even though the players never have to play at
exactly the same time (avoiding delay problems),
the musical exchange takes place in a tight loop,
leading to a highly cooperative experience. We'll
have to carefully design the user interface to hide
much of the complexity added through the dis-
tribution so that NetMusic remains usable with a
simple interface like the infrared batons.

To extend this concept to an even more versa-
tile global group performance scenario, we will
make the level of synchronicity adaptable to sup-
port different situations. Where bandwidth and
delay allow (for example, within a local area net-
work or using an ISDN connection), playback
could be done simultaneously, and a live video
link would increase the feeling of collaboration.
If, on the other hand, participants are located in,
say Canada, Austria, and Korea, it would make
sense to let them enter their tracks during conve-
nient hours in their respective time zones. In that
case, we will have to take additional care to pre-
serve the "group feeling.” For example, we could
record a video of each performer’s interactive
track creation, then distribute it to the other par-
ticipants as they use that track.

The key idea, however, is that each player will
not have to play their track without support.
Instead, our existing patterns will be available to
help them create their part if they wish. This
means that existing patterns must be applied, for
example, to the different instruments and roles in
a jazz band. That way, both experienced and inex-
perienced musicians can create musical recordings
(even together in one session) with an individu-
ally adaptable level of computer support for each
participant.
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Conclusion

To develop systems that turn interactive new
media into a usable reality, software engineers,
modelers of multimedia semantics, and HCI design-
ers need to work much more closely together, and
with a new level of support.

Crur Musical Design Patterns represent a step toward
such an integrated approach, geared to the media type
"music.” They can be considered a next level of abstrac-
tHon beyond the several existing object-orlented
approaches to musical systems and an attempt to take
the importance of interaction seriously.

Sample patterns like MetricTransformer and
ImprovisationHelper show what Musical Design
Patterns may look like, and the WorldBeat exhibit
shows their applicability in real-world systems.
Distributed scenarios will add another dimension
to their use. Musical Design Patterns thus capture
the various domains of experience in designing
interactive music systems: how to model certain
musical aspects, how to engineer them into a work-
ing system, and how to create intuitive, media-
adequate user interface metaphors that make such
a system actually usable, and thereby useful. MM
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