
UNCORRECTED P
ROOF

Journal of Visual Languages and Computing (2002) 13, 000^000
doi:10.1006/yjvlc.239 available online at http://www.idealibrary.com on

Animal: A System for SupportingMultiple Roles
in Algorithm Animation

GUIDO ROº SSLINGn
AND BERND FREISLEBENw

nDepartmentof Computer Science, Darmstadt University of Technology,Alexanderstra�e 6,D-64283 Darmstadt,
Germany, E-mail: roessling@acm.org and wDepartment of Electrical Engineering and Computer Science,
University of Siegen, Hoº lderlinstr.3, D-57068 Siegen, Germany, E-mail: freisleb@informatik.uni-siegen.de

Many algorithm animation tools have been developed over the last years.The users of
such tools can be separated into four roles: the original algorithm programmer, devel-
opers of the animation tool, visualizers that generate the animation and end users
viewing the animation. Most tools focus on providing features for only one or at most
two of these roles.The ANIMAL system is designed to present valuable bene¢ts for the
last three roles.The principal research contributions of this work lie in dynamic exten-
sibility, internationalization of GUI components and animation content, reversible
animation display and £exible import and export facilities.We also present several core
features of ANIMAL including dynamic recon¢guration, internationalization in both
GUI and animations, display scaling, export facilities and full video player
controls.r 2002 Published by Elsevier Science Ltd.

1. Introduction

ALGORITHM ANIMATION (AA) is a subtopic of software visualization focusing on the dy-
namic visualization of the higher level abstractions which describe software [1].Thus, it
covers the dynamic displayof actual implementation code, pseudo-code or other abstract
views.The interest in algorithm animation has grown over the last years, as indicated by
the growing number of publications, for example [2^5].
One of the ¢rst examples of algorithm animation is the ¢lm Sorting outSorting [6]. Shown

at many universities all over the world, the movie introduces nine di¡erent internal sort-
ing methods, including an e⁄ciency analysis.The movie is described in more detail in
[7]. Since then, many algorithm animations tools have been developed. Most of these
tools come fromuniversities and are freely available. However, the interpretation ofwhat
algorithm animation is di¡ers between the tools, and thus each provides a slightly di¡er-
ent approach.
The standard book for the more general topic of software visualization [2] provides

two di¡erent taxonomies for software visualization. The ¢rst taxonomy is based on a
framework of six categories: scope, content, form, method, interaction and e¡ectiveness. These cate-
gories are then further re¢ned into subcategories with up to three levels [1].The second
taxonomy for classifying algorithm animation displays uses a three-dimensional grid
with the axes persistence, contentand transformation type [8].

3b2v7 YJVLC : 239 Prod:Type:Com
pp:1214ðcol:fig::NILÞ

ED:MangalaGowri
PAGN: Kss SCAN: Profi

1045-926X/02/$-see front matterr 2002 Published by Elsevier Science Ltd.

UNCORRECTED P
ROOF

Price et al. [1] de¢ne four di¡erent roles in algorithm animation: user, visualizer, software
visualization software developer (or simply developer) and programmer.The user views and inter-
acts with an animation speci¢ed by the visualizer.The underlying animation system is de-
signed and implemented by developers. Finally, the programmer is the implementer of the
visualized algorithm, for example, Quicksort. Note that in this context, the programmer
may be unaware of animation plans by the visualizer.Therefore, most animation systems
cannot provide services for the programmer role.
Each role has di¡erent expectations of algorithm animation systems. Users want to

have a tool that runs smoothly, is easy to use and o¡ers features such as video-player-like
controls. Visualizers require comfortable and £exible animation generation, di¡erent
ways of generating animationsmaybe required to address personal preferences or experi-
ence levels. Developers may be interested in how easily the system can be updated or
extended according to visualizer or user demands.
Since 1998, we have been working on an algorithm animation system called ANIMAL

[9].The system is geared to address these expectations by providing valuable services to
the three roles concerned with algorithm animation. Users can freely adjust the magni¢-
cation and display speed, export animations to other formats, and choose the language
used in the graphical user interface and localized animations.The structuring of anima-
tions and the £exible display capabilities reduce the chance of getting lost.Visualizers can
choose between three di¡erent approaches for generating animations: graphically in a
GUI, by scripting, or using an API.They also pro¢t from the £exible object placement
features, internationalization support, precise timing of all actions and the generic gra-
phical primitives and animation e¡ects. Developers can implement additions that may be
added or removed while the system is running. These additions are con¢gurable on a
directory basis, allowing for di¡erent views of the same tool in a shared environment.
In addition, a new language for theGUI can be addedwithout touching any system code.
The paper is organized as follows. Section 2 gives a short survey of representative

algorithm animation systems. Section 3 describes the features of ANIMAL for the di¡erent
roles. Section 4 presents our conclusions and areas of future research.

2. RelatedWork

Algorithm animation is used in a variety of contexts including education, source code
debugging and presentation demands. Our reviewof the related systems focuses on their
educational use.This also constitutes the background of our ownwork, which began as
an implementation for an introductory computer science course. Over 150 software vi-
sualization prototypes and systems have been built over the last 20 years [1]. Instead of
trying to cover all of them,wewill illustrate how the di¡erent roles described in Section1
are addressed by some representative tools usable in an education context.
Most animation systems o¡er a set of control features for the user role. Some tools such

asJsamba [10] allow the user to adjust the speed of the display. Most systems can run in a
single-step mode. A slide showmode for a set of steps or the full animation is also com-
mon. Support for goingbackwards for a ¢xed number of steps as inDDD [11] is relatively
uncommon. Most systems do not support this operation at all.There are some notable
exceptions such as ZStep 95 [12] and Leonardo [13] which o¡er fully reversible execution.

G. ROº SSLINGANDB. FREISLEBEN2

YJVLC : 239

UNCORRECTED P
ROOF

Several tools focus on supporting the visualizer role.The approach taken for generating
a visualization varies between tools. Dershem and Brummund [3] describe an approach
for visualizing web-based sorting algorithms by decorating the algorithm with special
method invocations. Several other tools including the well-known POLKA, POLKA-RC and
XTANGO [14] provide special APImethods for visualization.Algorithma99 [15] lets the user
enter algorithms in a prede¢ned pseudo-code language which can then be visualized.
Several systems including JAWAA [16] and JSamba [10] visualize input provided in a

special command language. JHAVEŁ [5] extends the language used in JSamba with inter-
active quiz questions and links to external documentation. Generic presentation tools
such asMicrosoft Powerpointt and Sun StarImpresst are also often employed by instructors.
Most often, algorithm animations are added to lecture slides.The GUI-based generation
o¡ered by presentation tools places the least demand on user skills, but at the same time
also prevents automation. Furthermore, the lack of support for speci¢c data structures
such as lists makes animation generation both awkward and time-consuming.
Most published tools do not o¡er special support for the developer role. In many cases,

the source code for the system is not available, preventing developers from adding new
features. Even if the source code of the system is available, the usermaybe forced to ¢gure
out where additions have to be placed. A component-based system architecture as used,
for example, inAlgorithma 99 [15] may make it much easier to add new elements. Pattern-
based approaches as described byNguyen andWong [17] for sorting algorithms also sup-
port the developer. For example, the visualizer used in [17] can easily be replaced by
another implementation.
By de¢nition, the programmer role may be unaware of future plans for animation when

implementing the algorithm. Rasala [18] describes how array algorithms can be automa-
tically animated.This requires adapting the array to a template and using a special imple-
mentation that visualizes the operations.Thus, a small change to the code is required.
Several systems supporting the programmer role rely on debugger data, while others

are actually debuggers with a graphical front-end that can be used for AA. Probably the
most wide-spread representative of the latter type is the GNU Data Display Debugger
(DDD) [11]. DDD is reported to have more than 250 000 users world-wide and acts as a
front-end for command line debuggers such as GDB. DDD is typically used to locate
bugs in programs, but also o¡ers a selection of visualization features. Objects are dis-
played in boxes with references shown as pointers.When the underlying program stops,
DDD retrieves the current values from the debugger and updates the display.This can be
regarded as an algorithm animation.The standard display modes include a list display or
a selection of numerical value plots. The plots can also be ‘animated’ by updating the
display at breakpoints combined with a continue directive.
There are several similar algorithm animation tools based on interpreting source code,

for exampleZStep95 [12]. Used for functional programming, this tool also supports going
back-wards in the display. The KAMI system [19] relies on debugger data and uses a
‘paper-slide’ display mode consisting of a set of overlapping slides illustrating nested
method invocations. Jeliot [13] interpretsJava source code and automatically generates a
visualization. Jeliot 2000 [21] is a special re-implementation of Jeliot for high-school stu-
dents. Algorithms can be edited and compiled within the tool and are animated includ-
ing the evaluation of conditions. Leonardo [13] interprets C source code. The execution
model also allows ¢ne-grained control over the animation including reverse execution.
Alas, Leonardo is only available for Macintosh computers.

A SYSTEM FORALGORITHMANIMATION 3

YJVLC : 239

UNCORRECTED P
ROOF

Several systems are geared for speci¢c contexts. Example contexts include formal lan-
guages [22], recursive methods [23], scheduling and page replacement algorithms [24],
image compression [25], computer architecture models [26] or grading purposes [4, 27].
Some of these systems [24, 25] show the previous state next to the current state.

3. Animal Features

Most related systems cater for one of the four roles, with only few systems supporting two
roles.Wewanted our system to addressmost of the roles.We start with an example anima-
tion and then outline the core features ANIMAL o¡ers for the di¡erent roles.The program-
mer is the only role we have to exclude.We are currently looking into a way to extract
relevant data from a programwithout having to adapt the original code manually. How-
ever, this development is still in the early stages.

3.1. Example ANIMAL Animation

ANIMAL animations consist of a linked sequence of animation steps. An animation step
can contain an arbitrary number of animation e¡ects, each of which canwork on several
objects at the same time.The animation can be structured by labeling individual steps,
with the label acting as a hyperlink in the display front-end [28].The next animation step
is shownwhen the user activates special GUI elements, or automatically after an optional
delay speci¢ed by the visualizer.
Figure 1 shows a screen shot of an ANIMAL animation.The window is split into three

segments, with two £oatable control segments embracing the central content area. A
control tool bar at the top of the window allows adjusting the display speed and magni-
¢cation. A second tool bar at the bottom contains control elements for triggering the
animation display. For layout reasons, we have dragged the control bar from this ¢gure.
It is discussed in detail in Section 3.2.The center of the display is occupied by the canvas
presenting the animation itself.
The tool bar at the top of the window contains two groups of control elements.The

slide ruler to the left adjusts the animation speed between 0 and 1000% of the original
speed.Thebutton next to the slide ruler resets the speed to100%.The second slide ruler is
used for setting the displaymagni¢cation. It o¡ers values between 0 and 500%.Themag-
ni¢cation can also be reset to 100% using the button at the top right. Scaling the anima-
tion window for the available page layout introduces some display artifacts, especially
regarding text elements and the labeling of the slide ruler ticks.
The animation shown illustrates the branch and bound solution to the dynamic knap-

sack problem.The state space tree is shown at the left of the display, containing the in-
dividual solution nodes with costs. The ellipse at the bottom shows the currently
calculated values and the state of the queue. Finally, the right-hand side of the display
contains the pseudo-code of the algorithm.The current step is highlighted by a di¡erent
color shade, in the screen shot, this is step 9.
The example animation was created by four students at the University of Wisconsin

Park-side usingANIMAL’s graphical front-end. It contains 173 animation steps with a total
of 299 graphical primitives. Stored in ANIMAL’s compressed ASCII-based format, the
animation occupies 9958 bytes.

G. ROº SSLINGANDB. FREISLEBEN4

YJVLC : 239

UNCORRECTED P
ROOF

3.2. Features for Users

The user viewing an animation is one of the most important clients of anyAA system. If
the users are dissatis¢ed with the tool, they will not want to use it.This also renders the
workof the other three roles useless. Many di¡erent considerations have to be taken into
account when implementing graphical user interfaces. Faulkner [29] o¡ers a compact
overview of general user interface considerations. This section lists some special user
features in ANIMALwhich are independent of the generic considerations.
One key aspect in tool usability is the language inwhich the tool is held.Most users are

likely to prefer seeing the tool’s elements in their native language, assuming the transla-
tion is well done.Therefore, we have embedded £exible internationalization support for
the graphical user interface components, as well as all messages displayed during pro-
gram execution.To change the language of the interface, the user simply selects one of
the provided language keys from a Language menu. All elements are updated at once to

Figure 1. Screen shot of ANIMAL’s animationwindow

ASYSTEM FORALGORITHMANIMATION 5

YJVLC : 239

UNCORRECTED P
ROOF

the changed language settings, including menu items, button labels and activation hot-
keys.
Translating the graphical user interface to another language such as Spanish may be

helpful for users £uent in Spanish. However, this is not very e¡ective if the animation
itself is in German.The built-in scripting languageANIMALSCRIPT [30] supports the gen-
eration of an arbitrary number of language versions within a single animation.The user
can choose the animation language on loading the animation from the set of available
translations.
A second central area of user support lies in the display controls. Some systems can

onlydisplay the animation in the forward direction.Only fewsystems such asZStep95 [12]
or Leonardo [13] o¡er full reverse playing.The reversibility is achieved by a special inter-
pretation engine. The underlying semantics of the interpreted programming language
limits the applicability of the system.
Several systems have limited support for going backwards in the animation, bought at

the cost of memory for storing the history, for example [11]. Additionally, some systems
including JAWAA [31] and JSamba [14] let the animation run throughwithout user interac-
tion, unless explicitly paused. A short distraction may be su⁄cient to miss a relevant
event without being able to go back.
One challenge in designing the ANIMAL system therefore was providing e⁄cient ran-

dom access to the animation steps. Part of the problem lies with irreversible e¡ects, such
as scalingobjectswith a factor of 0. Additionally, simplydisplaying the previous stepwith
reverse animation may be insu⁄cient for user understanding. Anderson and Naps [32]
state that e⁄cient rewinding is one of the most important ‘open questions’ in AA.
WithANIMAL, we propose a solution to this problem. Clones of the primitives are used

to replace the actual primitives in transformations. Irreversible e¡ects can therefore easily
be ‘undone’ by starting from the beginning of the animation in the worst case. Smooth
reverse playing is achieved by treating e¡ects as a change of properties on a percentage
scale, with the start of the e¡ect at 0% and the end at 100%. Our implementation e⁄-
ciently supports smooth reverse playing by simply letting animation e¡ects start at 100%
and change their state to 0% instead of in the opposite direction.
ANIMAL provides several di¡erent controlmechanisms for selecting the current anima-

tion step: a control tool bar, a list of labeled animation steps, a slide ruler and a text ¢eld
for direct input.The control tool bar, shown in Figure 2, provides the same functionality
as a video player.The buttons, from left to right, o¡er the following functions:

* rewind to the ¢rst animation step,
* return to the previous step, without displaying the transformations in the step,
* run the animation in reverse slide show mode,
* display the current step backwards, like performing an animated ‘undo’operation,
* pause at the end of the current step,

Figure 2. ANIMAL’s animation display control tool bar

G. ROº SSLINGANDB. FREISLEBEN6

YJVLC : 239

UNCORRECTED P
ROOF

* play the current step,
* run the animation in slide show mode,
* go to the next step,
* and go to the last step in the animation.

The slide show modes temporarily link all steps, causing the full animation to be dis-
played without additional interaction. This does not a¡ect manually speci¢ed delay
times. Steps which normally wait for a key press are linked with a delay time that can
be set in the con¢gurationwindow.The slide showmode is therefore similar to the stan-
dard display in JSamba [10]. Gloor’s second ‘commandment of algorithm animation’ [28]
states that users should interact with the system at least every 45 s.Therefore, we regard
the slide show mode as an added bonus, not as the central control.
The slide ruler for adjusting the animation progress shows the execution state on a

percentage scale. Dragging the ruler acts like a fast forward or backward operation.The
slide ruler’s tool tip text states the current percentage of the animation. The text ¢eld
expects the input of a valid step number and changes to the step. If the requested step
does not exist, the input has no e¡ect and the step number is reset to the current step.
The time linewindow shown in Figure 3 gathers all labeled animation steps. Each line

in thewindowcontains a step label, followedby the step number in parentheses. Clicking
onone of the labels immediately sets the animation to the associated step.This follows the
suggestion of Gloor’s third ‘commandment of algorithm animation’ [28] by enabling the
accentuation of logical algorithmic units.
Another issue in animation display is the varietyof screen resolutions. Especiallywhen

using laptop computers with a display of only 800� 600, the animationwindow may be
smaller than the animation content. Another possible cause for size mismatches is desk-
top layout preference. ANIMAL automatically adds scrollbars to the display as needed.
However, scrolling through the animation display for each step is not attractive.
We resolve this problem by allowing the user to scale the animation display. A slide

ruler is used for adjusting the magni¢cation to any value between 0 and 500%. ANIMAL
resizes the display £uidly. The representation of pixel coordinates as a pair of integer
values implies that some magni¢cations work better than others. This is especially the
case for text elements, as Java cannot allocate fonts of arbitrary real-valued pixel sizes.
Therefore, text that was placed inside a box may become larger than the box in some
magni¢cation scales. Changing the scaling factor by a few percentage points is usually

Figure 3. ANIMAL’s time line window with labels acting as hyperlinks

A SYSTEM FORALGORITHMANIMATION 7

YJVLC : 239

UNCORRECTED P
ROOF

su⁄cient to ¢x these problems.The current magni¢cation scale is displayed on the slide
ruler’s tool tip. For convenience, a button for resetting the magni¢cation to 100% is
added.
Finally,ANIMAL supports diverse import and export ¢lters.Most animation systems do

not seem to o¡er any import or export facilities. For example, the scripting languages
employed in JAWAA [31] and JSamba [10] are syntactically very similar; however, neither
tool can parse the other tool’s notation. ANIMAL’s open data exchange architecture allows
the user to plug in new ¢lters once they are made available on theWWW.
The standard ANIMAL import ¢lters allow reading andwriting the formats of ANIMAL,

as well as a beta version of a JSamba import ¢lter.We also plan to add a ¢lter for JAWAA.
Dependingon the features of the output format, the user can choose between exporting a
single snapshot for each of the selected export steps, or exporting the step with full dy-
namics. Animations can currently be exported to validated XML and several image for-
mats including BMP, JPG, PNG and Photoshop PSD, as well asQuicktime videos.The generation
of videos is currently restricted toWindows and MacOS, as the underlying Quicktime for
Java API [33] incorporates native code.

3.3. Features forVisualizers

The visualizer has full timing control over each animation e¡ect by specifying both a
duration and an o¡set from the start of the animation step. The intermediate states of
the animated objects are interpolated based on the current state of execution and the
duration of the e¡ect.Thus, the second frame of a move e¡ect that spans ¢ve consecutive
display frames will show the target objects at 20% of the way to their target positions.
We want to address a wide range of visualizers with our system.Therefore, three dif-

ferent ways of generating animations are o¡ered: graphically, by scripting and by API
calls. In addition, animations can be imported into the system. ANIMAL treats all loaded
animations in the same way, regardless of their origin.Thus, all animations can also be
further re¢ned in the graphical editors.
ANIMAL’s graphical front-end for animation generation o¡ers access to the full func-

tionality.We have kept the interface as simple as we could to avoid confusing novice users
with large menus.The graphical interface contains a drawing window and an animation
overviewwindow for assembling the animation e¡ects.The complete graphical interface
can be translated into another language with a single menu item selection.We currently
provide English and German interface versions. Additional languages can be incorpo-
rated by translating a message ¢le and adapting the con¢guration without touching the
system’s code.
The drawingwindow, shown in Figure 4, represents a static viewof a given animation

stepwith all animation objects used in the step. Newobjects are added by clicking on the
generation buttons at the top, and then following the instructions in the status line at the
bottom of the window. A speci¢c editor window opens when objects are generated or
edited. The editors can be used to adapt object properties such as the color or depth
information. The drawing interface supports drag and drop on objects or individual
nodes. A pop-upmenu containing the most common operations is also included. Other
features include cloning the current object selection, scaling the display and adjusting
settings such as the grid width.

G. ROº SSLINGANDB. FREISLEBEN8

YJVLC : 239

UNCORRECTED P
ROOF

The animation overviewwindow, shown in Figure 5, is used for assembling an anima-
tion. Animation steps or e¡ects can be added or removed. Animation e¡ects are gener-
atedbyclickingon one of the buttons at the top.An e¡ect-speci¢c pop-up editor window
can then be used to assemble the properties of the e¡ect, such as the timing information
and the a¡ected objects.
Scripting-based generation uses the built-in ANIMALSCRIPT [30] language, which sup-

ports all operations available in the graphical front-end. It also o¡ers command short-cuts
that combinemultiple objects. For example, ANIMALSCRIPTsupports arrays, lists and code
elements. Array support includes index pointers, putting and swapping elements. Lists
allow the setting and clearingof their pointers.The number of pointers canbe anynatural
number, and the position can be either to the left, right, above or below the list element
value. Code support incorporates highlighting code lines or individual line elements, as
well as indentation based on the font size.

Figure 4. ANIMAL’s drawing window

Figure 5. ANIMAL’s animation overview window

ASYSTEM FORALGORITHMANIMATION 9

YJVLC : 239

UNCORRECTED P
ROOF

ANIMALSCRIPT animations can easily be generated within program code. ANIMAL-
SCRIPTo¡ers several additions compared to other scripting languages such as those em-
ployed in JAWAA [31] and JSamba [10]. Animation internationalization is supported by
either embedding the translations into the animation, or linking each translatable text
to an external resource ¢le.The translated texts must be provided by the visualizer. Note
that the translation of any text is highly likely to impact the text width.
ANIMALSCRIPT o¡ers highly £exible object placement mechanisms to avoid overlap-

ping elements or empty spaces in di¡erent language versions. Individual locations can
be de¢nedusing absolute ðx; yÞ coordinates, byan o¡set from another object, relative to a
stored location, or relative to the last location used.The o¡set operations use the eight
compass directions and the center designation, similar to XTANGO [14]. O¡sets from an
object refer to the object’s bounding box or an individual node of a polyline object. Re-
lative placement is resolved on loading the animation. Using a given object’s bounding
box also solves the problem of text width di¡erences in internationalized animations.
Locations can be stored andused in anyof the speci¢cationmethods. Relative movement
is similar to the forward operation employed in Logo and simpli¢es the generation of
many object types such as function graphs.
ANIMALSCRIPTsupports debugging using the echo command. Most commands have

several optional parameters, so that the user is not forced to specify unwanted entries.We
also provide a separateJava API for generating animations.To reduce redundant imple-
mentations, the API acts as a wrapper for generating customized ANIMALSCRIPT com-
mands.We expect most visualizers to use either the scripting language or the API after
they have become familiar with the system.

3.4. Features for Developers

Developers expect a system to be well-documented, easy to learn and extend, and adap-
table to speci¢c needs. Ideally, both recompilation and source code modi¢cations should
be unnecessary for adding new features. To achieve this goal, ANIMAL is dynamically
assembled from independent components at start-up according to a con¢guration ¢le.
Java’s dynamic loading facilities also make adding or removing components at runtime
possible.
The con¢guration is stored in a properties ¢le in the current directory.Thus, devel-

opers can add experimental features to one con¢gurationwithout impacting other con-
¢gurations. This is especially relevant in the context of a shared installation using a
common base con¢guration. If a given component is unwanted or does not work prop-
erly, it can also be removed at runtime.The sole exception to this rule are the core com-
ponents of the system.We plan to gather all available extensions on the ANIMAL home
page [34] including a description of the added features.
ANIMAL developers can implement their own extensions following our (forthcoming)

implementation guidelines. Example extension areas are adding graphical primitives,
animation e¡ects, import or export ¢lters, and new scripting commands. In all cases,
the developer has to extend abase class that encapsulatesmuch of the administrative tasks.
The newclass must be placed in the appropriateJava package and follow naming conven-
tions.
Implementing new features is comparatively easy, as the developer usually does

not have to modify any of the underlying code. Much of the implementation is rather

G. ROº SSLINGANDB. FREISLEBEN10

YJVLC : 239

UNCORRECTED P
ROOF

straightforward, although a certain amount ofJava knowledge is required.Newgraphical
primitives can be created easily by combining existing primitives, or alternatively by im-
plementing them from scratch.
Graphical primitives are decoupled from animation e¡ects using a special intermediate

handler class. Each handler speci¢es the names of all available animation e¡ects for its
underlying primitive.The handler is also responsible for mapping given e¡ects to a set of
method invocations on the primitive. Graphical primitives and animation e¡ects can
therefore be treated as fully independent components.
Providing a newanimation e¡ect requiresmodi¢cations to at least one primitive hand-

ler class.The developer has to add a name for the animation e¡ect and map the execution
to appropriate primitive method invocations. Both operations are simple text modi¢ca-
tions that can often also be accomplishedwithoutJava programmingexperience.Without
the modi¢cations, no primitive type is registered for the new e¡ect, thus rendering it
unreachable.
Developers can easily provide a new language to be supported in the GUI. This re-

quires the translation of a simple text ¢le containing all localized messages. Additionally,
four lines have to be added to a con¢guration ¢le.They specify the label of the language
menu item, the tool tip text, the language and country code and the name of an image.
The image should symbolize the countryor language, for example, by using the country’s
£ag.

4. Conclusions

In this paper, we have presented the features the algorithm animation system ANIMAL
o¡ers for the three user roles user, visualizer and developer. Users can adjust the display of the
animation in various ways.The video player control bar includes forward and fully dy-
namic backward slide show mode. Animation steps may possess a label that gives struc-
ture to the animation and also acts as a hyperlink to the step.The magni¢cation can be set
to a value appropriate for the current environment. Even large animations can be dis-
played on small display sizes, with a very modest quality degradation.The language used
in the GUI can be changed with one menu selection. Animations built with ANIMAL-
SCRIPT can also provide multiple language versions without overlapping elements or
white spots. The language support depends on the languages available in the current
setting.

Visualizers pro¢t from the highly £exible graphical primitives and animation e¡ects
provided by the base system, as well as from additions loaded from the WWW. They
can choose between a graphical interface, scripting or API for generating animations
according to their preferences and skill levels. Each animation e¡ect can be precisely
scheduled using an o¡set from the start of the animation step and a duration. Scripting
and APIgeneration add powerful commands which are mapped to a set of primitives or
e¡ects. Examples include extensive support for internationalization, £exible object place-
ment and special primitive support as for arrays, lists or code elements.

Developers should ¢nd it easy to extend or adapt ANIMAL to their preferences, including
adapting the language used in the GUI front-end. Most possible ANIMAL extensions do
not require anymodi¢cation of the system code. If code has to be touched, the modi¢ca-
tion is typically localized to a single class.

A SYSTEM FORALGORITHMANIMATION 11

YJVLC : 239

UNCORRECTED P
ROOF

Further plans for ANIMAL include providing newgraphical primitives, such as images
and item lists.We plan to publish a documentation of the steps for extending the system
on the tool page. Since 2001, ANIMALSCRIPT is also supported by the JHAVEŁ environment
[5].The bene¢ts of this cooperation regarding multiple-choice quizzes and links to ex-
ternal, dynamic HTML documentation seem promising, though it is too early for a de-
tailed evaluation.
We are also working on providing an applet version of the ANIMAL player front-end.

The applet might not fully resemble the application due to the tight integration with
Swing and the lack of Swing support in current browsers. An older applet version is
available at the ANIMAL home page [34]. Note that this applet may not work with some
versions of Netscape due to bugs in Netscape’s security manager implementation.
ANIMAL is available on the Internet at http://www.animal.ahrgr.de/. All currently re-

gistered ANIMAL animations as well as future extensions of ANIMALwill also be collected
at this location.

Acknowledgements

The authors would like to thank the students P. Ahlbrecht, J. Brodowski, A. Floº per, M.
Schoº uler, and M. Smith for their work in implementing parts of ANIMAL.

References

1. B. Price, R. Baecker& I. Small (1998) An introduction to software visualization. In: Software
Visualization (J. Stasko, J. Domingue, M. H. Brown & B. A. Price, eds). MIT Press,
Cambridge, MA, Chapter 1, pp. 3^27.

2. J. Stasko, J. Domingue, M. H. Brown & B. A. Price (eds) (1998) Software Visualization:
Programming as a Multimedia Experience. MIT Press, Cambridge, MA.

3. H. L.Dershem&P.Brummund (1998)Tools forWeb-Based SortingAnimations.29thACM
SIGCSE Technical Symposium on Computer Science Education (SIGCSE’ 98), Atlanta, GA, pp.
222^226.

4. D. Jarc,M.B. Feldman&R. S.Heller (2000)Assessing the bene¢ts of interactive prediction
using web-based algorithm animation courseware. 31st ACM SIGCSETechnical Symposium on
Computer Science Education (SIGCSE 2000), Austin,TX, pp. 377^381.

5. T. Naps, J. Eagan& L. Norton (2000) JHAVEŁ : an environment to actively engage students
in web-based algorithm visualizations. 31st ACM SIGCSE Technical Symposium on Computer
Science Education (SIGCSE 2000), Austin,TX, pp.109^113.

6. R. Baecker & D. Sherman (1981) Sorting out Sorting. 30minute color ¢lm, Dynamic
Graphics Project, University of Toronto (excerpted and ‘reprinted’ in SIGGRAPH Video
Review 7, 1983). Distributed by Morgan Kaufman Publishers, Los Allos, CA.

7. R. Baecker (1998) SortingOutSorting: a case study of software visualization for teaching com-
puter science. In: SoftwareVisualization (J. Stasko, J. Domingue, M. H. Brown & B. A. Price,
eds). MIT Press, Cambridge, MA, pp. 369^381.

8. M. H. Brown (1998) A taxonomy of algorithm animation displays. In: SoftwareVisualization
(J. Stasko, J. Domingue, M. H. Brown & B. A. Price, eds). MIT Press, Cambridge, MA,
Chapter 3, pp. 35^42.

9. G. Roº �ling, M. Schuº ler & B. Freisleben (2000) The ANIMAL algorithm animation tool. 5th
Annual ACMSIGCSE/SIGCUEConference on Innovation and Technology in Computer Science Education
(ITiCSE 2000), Helsinki, Finland, pp. 37^40.

G. ROº SSLINGANDB. FREISLEBEN12

YJVLC : 239

UNCORRECTED P
ROOF

10. J. Stasko (1998) SambaAlgorithmAnimationSystem. Available at http://www.cc.gatech.edu/gvu/
softviz/algoanim/samba.html.

11. A. Zeller (2001) Animating data structures in DDD. First International ProgramVisualization
Workshop, Porvoo, Finland. University of Joensuu Press, pp. 69^78.

12. H. Lieberman & C. Fry (1998) ZStep 95: A reversible, animated source code stepper. In:
SoftwareVisualization (J. Stasko, J. Domingue, M. H. Brown & B. A. Price, eds). MIT Press,
Cambridge, MA, Chapter 19, pp. 277^292.

13. P. Crescenzi, C. Demetrescu, I. Finocchi & R. Petreschi (2000) Reversible execution and
visualization of programs with LEONARDO. Journal of Visual Languages and Computing 11,
125^150.

14. J. Stasko (1998) Smooth continuous animation for portraying algorithms and processes. In:
SoftwareVisualization (J. Stasko, J. Domingue, M. H. Brown & B. A. Price, eds). MIT Press,
Cambridge, MA, Chapter 8, pp. 103^118.

15. A. I. Concepcion, N. Leach&A. Knight (2000) Algorithma 99: an experiment in reusabil-
ity & component based software engineering. 31st ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE 2000), Austin,TX, pp.162^166.

16. W. Pierson& S. H. Rodger (1998)Web-based animation of data structures using JAWAA.29th
ACM SIGCSETechnical Symposium on Computer Science Education (SIGCSE’98), Atlanta, Georgia,
pp. 267^271.

17. D. Nguyen & S. B.Wong (2001) Design patterns for sorting. 32nd ACM SIGCSE Technical
Symposiumon Computer Science Education (SIGCSE 2001), Charlotte, NC, pp. 263^267.

18. R. Rasala (1999) Automatic array algorithm animation in C++. 30th ACM SIGCSETechnical
Symposiumon Computer Science Education (SIGCSE’99), New Orleans, LA, pp. 257^260.

19. M.Terada (2001) Animating C programs in paper-slide-show.First International ProgramVisua-
lizationWorkshop, Porvoo, Finland. University of Joensuu Press, pp. 79^88.

20. J. Haajanen, M. Pesonius, E. Sutinen, J.Tarhio,T.Teraº svirta & P.Vanninen (1997) Anima-
tion of user algorithms on the web. IEEESymposiumonVisual Languages, pp. 360^367.

21. R. B.-B. Levy, M. Ben-Ari & P. A. Uronen (2001) An extended experiment withJeliot 2000.
First International ProgramVisualizationWorkshop, Porvoo, Finland. University of Joensuu Press,
pp. 131^140.

22. T. Hung & S. H. Rodger (2000) Increasing visualization and interaction in the automata
theory course. 31st ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
2000), Austin,TX, pp. 6^10.

23. C. E. George (2000) EROSIFvisualizing recursion and discovering new errors. 31st ACM
SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2000), Austin, TX, pp.
305^309.

24. S. Khuri & H.-C. Hsu (1999) Visualizing the CPU scheduler and page replacement algo-
rithms. 31st ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE’99), New
Orleans, LA, pp. 227^231.

25. S. Khuri & H.-C. Hsu (2000) Interactive packages for learning image compression algo-
rithms. 5th Annual ACM SIGCSE/SIGCUE Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2000), Helsinki, Finland, pp. 73^76.

26. W.Yurcik & L. Brumbaugh (2001) Aweb-based little man computer simulator. 32nd ACM
SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2001), Charlotte, NC, pp.
204^208.

27. S. Bridgeman,M.T.Goodrich, S. G.Kobourov&R.Tamassia (2000) PILOT: an interactive
tool for learning and grading.31stACMSIGCSETechnicalSymposiumonComputerScienceEducation
(SIGCSE 2000), Austin,TX, pp.139^143.

28. P. A. Gloor (1998) User interface issues for algorithm animation. In: SoftwareVisualization
(J. Stasko, J. Domingue, M. H. Brown & B. A. Price, eds). MIT Press, Cambridge, MA,
Chapter 11, pp. 145^152.

29. C. Faulkner (1998) The Essence of Human^Computer Interaction. Prentice-Hall, Englewood Cli¡,
NJ.

30. G. Roº �ling& B. Freisleben (2001) ANIMALSCRIPT: an extensible scripting language for algo-
rithm animation. 32nd ACM SIGCSETechnical Symposium on Computer Science Education (SIGCSE
2001), Charlotte, NC, pp. 70^74.

A SYSTEM FORALGORITHMANIMATION 13

YJVLC : 239

UNCORRECTED P
ROOF

31. S. Rodger (1997). JAWAA and Other Resources. Available at http://www.cs.duke.edu/Brodger/
tools/tools.html.

32. J. M. Anderson&T. L. Naps (2001) A context for the assessment of algorithmvisualization
system as pedagogical tools. First International ProgramVisualizationWorkshop, Porvoo, Finland.
University of Joensuu Press, pp. 121^130.

33. Apple Computers, Inc. (2001) Quicktime forJava API.WWW:http://developer.apple.com/
quicktime/qtjava/index.html.

34. G. Roº �ling (2001). ANIMALHome Page.WWW: http://www.animal.ahrgr.de.

G. ROº SSLINGANDB. FREISLEBEN14

YJVLC : 239

