
Vector Representations for the Analysis and Design of Distributed Controls

Michael Welzl
Computer Science Dept. / University of Innsbruck

Technikerstr. 25, A-6020 Innsbruck
Austria

ABSTRACT

We present novel methods of using vector diagrams of
distributed control systems. A classic method is described
and enhanced with four extensions, the benefit of three of
them is demonstrated by examples. Our scenario is
restricted to congestion control in computer networks, but
we expect our results to be applicable to a much broader
spectrum of control problems.

KEY WORDS: Distributed Controls, AIMD, TCP,
Stability

1. INTRODUCTION

Congestion control in computer networks with a
connectionless network layer has been an important
research topic for many years. The global success of the
Internet and its immense scalability have led to a common
view of congestion control which is mainly based on the
foundations of the TCP ("Transmission Control
Protocol") mechanisms described in [1] and the "end to
end argument" [2] – the fact that TCP basically realizes an
AIMD ("Additive Increase, Multiplicative Decrease")
algorithm is often mentioned as the primary reason for its
stability and the stability of the Internet as a whole. This
reasoning goes back to early work by Chiu and Jain [3],
where AIMD is identified as a feasible synchronous
control both algebraically and by means of vector
representations: the system state transitions are regarded
as a trajectory through an n-dimenstional vector space –
in the case of two controls (which represent two users in a
computer network), this vector space is two-dimensional
and can be drawn and analyzed easily.

Such vector diagrams are a very simple means of
explaining the convergence and stability properties of
distributed controls. Moreover, they can help to give an
intuitive idea of the quality of a control mechanism. Strict
mathematical analysis, on the other hand, can become
exceedingly complex and often leads to simplifications
that appear to be less realistic than the two-user case1.

1 If, in the case of distributed linear controls, a system
meets the conditions for Lyapunov stability, any

Examples are [5] ("Under the assumption that queueing
delays will eventually become small relative to
propagation delays, we derive stability results for a fluid
flow model of end-to-end Internet congestion control")
and the contradictive cases [6] ("We assume in this paper
that negative feedback received by sources is rare, and is
proportional to the source rate.") and [7] ("We assume
that the probability of having a packet loss within a
window of x consecutively transmitted packets does not
depend on their transmission rate.").

Since their appearance in [3], vector representations have
become a common tool to explain the state transitions of
congestion control mechanisms. Yet, the occurence of
these diagrams appears to be limited to cases which are
similar to the case examined by Chiu and Jain in two
aspects2:
1. The feedback and control loop for all controls is

synchronous, which means that each control sees the
same feedback at any time.

2. The feedback is binary, so the information is limited
to "there is congestion" vs. "there is no congestion".
In the case of TCP, this feedback is traditionally
implicit (based on packet loss). The recent addition of
a congestion bit in the IP header, ECN, turns this into
explicit feedback, but the meaning stays the same
[10].

This paper is organized as follows: section 2 describes the
traditional usage of vector representations as it is found in
[3] and its successors. In section 3, we explain how the
usage of vector diagrams can be extended; examples are
given in section 4. Concluding remarks are presented in
section 5.

2. BACKGROUND

Fig. 1 shows a vector diagram along with three of the
controls studied in [3]: AIAD ("Additive Increase,
Additive Decrease"), MIMD ("Multiplicative Increase,
Multiplicative Decrease") and the already mentioned

superposition of such systems is stable [1] [4]. This fact
can be used to inductively prove global stability.
2 See [8] and [9] for examples.

AIMD. MIAD ("Multiplicative Increase, Additive
Decrease") is missing because the other three controls
suffice to explain the reasons that led to the choice of
AIMD for TCP.
Each axis in the diagram represents a user in the network.
Therefore, any point (x1, x2) represents a two-user
allocation. The sum of the system load must not exceed a
certain limit, which is represented by the Efficiency Line.
The load is equal for all points on lines which are parallel
to this line. One goal of the distributed control is to bring
the system as close as possible to this line.

Another goal is to achieve fairness between the two users.
A very basic definition of fairness (given a computer
network where a user utililizes several resources, there are
many other definitions which describe realizations of
fairness according to different objectives) is that the
system load consumed by user 1 should be the same as the
load consumed by user 2. This is true for all points on the
Fairness Line (note that the fairness is equal for all points
on all lines which pass through the origin. Following [3],
we therefore call any such line "Equi-Fairness Line"). The
optimal point is the point of intersection between the
Efficiency Line and the Fairness Line. The "Desirable"
arrow in fig. 1 represents the optimal control: it moves to
the optimal point and stays there (is stable). It is easy to
see that this control is unrealistic for binary feedback:
given that both users get the same feedback at any time,
there is no way for user 1 to interpret the information
"there is congestion" or "there is no congestion"
differently than user 2 – but the Desirable vector has a
negative x1 component and a positive x2 component.

Adding a constant positive or negative factor to a value at
the same time corresponds to moving along at an angle of
45°. This effect is produced by AIAD: the system starts at

a point underneath the Efficiency Line and moves upward
at an angle 45°. The system ends up in Overload state (the
state transition vector passes the Efficiency Line), which
means that it now provides the feedback "there is
congestion" to the users. Next, both users decrease their
load by a constant factor, moving back along the same
line. With AIAD, there is no way for the system to leave
this line.

MIMD is similar, but a multiplication by a constant factor
corresponds with moving along an Equi-Fairness Line.
AIMD actually approaches the optimal point, but due to
the binary nature of the feedback, the system cannot
converge to a stable point but to an equilibrium – it will
eventually fluctuate around the optimum. Note that these
are by no means all possible controls: other examples are
MIAD, controls with both an additive and multiplicative
component [8] and nonlinear controls [9].

3. EXTENDED USE OF VECTOR
DIAGRAMS

In the design process of a congestion control mechanism,
it is always important to distinguish between necessary
and sufficient conditions: while the explanations in the last
section suffice to prove that AIAD and MIMD are not
feasible, the explanations are not sufficient to prove the
usefulness of AIMD due to the limitations of the model.
In other words, it is necessary for a distributed control
mechanism to converge towards the optimal point in the
case of synchronous control loops. Mechanisms which do
not fulfil this property are not feasible. But a mechanism
must also work in the case of asynchronous control loops
("heterogeneous round-trip times" in terms of computer
networks).

Asynchronous loop delay
There is no reason why the diagram should not be used to
analyze the asynchronous case other than that the
development of state transitions is less obvious. We
therefore chose to write a simple simulator for the two
user case. The system convergence should be independent
of the initial state, so our simulator provides an interactive
graphical user interface where the user can set the starting
point and take a look at a trajectory by clicking the mouse
in the diagram. This way, it is easy to test the
asynchronous case: we assumed that the feedback will be
given somewhere along the path from the sender to the
receiver (after less than half a round trip time) and
therefore chose to update the feedback for a user after a
fourth of its loop delay. With this simplified model, we
ignore queuing delay fluctuations; typical TCP effects
such as round-trip time estimation and timeouts are not
modelled either. We believe that despite these
simplifications, our model suffices to get a basic idea of
the nature of a control mechanism – and this is just what
is needed during the design stage.

Fig. 1: Vector representations of distributed linear
control algorithms

User 1 Allocation x1

Fairness
Line

Efficiency
Line

U
se

r
2

 A
llo

ca
tio

n
x2

Starting
Point

AIMD

Desirable

Starting
Point

AIAD

MIMD

Underload

Overload

Different feedback
While implicit and explicit binary feedback are currently
used in the Internet, other kinds of feedback may be
advantageous. ATM networks provide a service called
"Available Bit Rate" (ABR), which comprises a
framework for fair and optimal bandwidth sharing based
on so-called "Explicit Rate Feedback". Here, ATM
switches calculate an Explicit Rate value which is fed
back to the users and used to tune the congestion control
mechanism at the end points. The more complex nature of
the feedback naturally makes the mathematical analysis of
ABR mechanisms more difficult. Vector diagrams can be
used to analyze the behaviour of an ATM ABR switch
mechanism just as well as AIMD congestion control.

A greater degree of realism
The simplifications made for our simulator may or may
not be sufficient to aid in the design of a new congestion
control mechanism, but they are definitely not feasible for
in-depth analysis of congestion control mechanisms.
Mathematical analysis of the asynchronous case is
difficult as the network can not be modelled by a single
control system anymore. On the other hand, there are
much more complex simulators which cover many
specific networking effects and are capable of recording
the system state. With this data, it is possible to plot the
utilization of one user against the utilization of another
user and thus get a vector representation which gives
more insight into the convergence properties of the
control than traditional bandwidth utilization plots.

Analysis of real network tests
It is a well known fact that simulations cannot replace real
life tests, no matter how complex a simulator is.
Apparently, there is no reason why real life measurements
should not be examined in a vector diagram.

4. EXAMPLES

We now present some examples where extended use of
vector diagrams illustrates features that would be hard to
see by any other means. Apart from real network tests,
which were omitted for brevity, all extensions from the
previous section are utilized.

Asynchronous loop delay
Figure 2 shows an AIMD trajectory from our simulator
where the round-trip-times of the users were chosen to be
7 and 2 time units, respectively. The additive-increase
step was 0.1 and the multiplicative-decrease factor was
0.5, the simulation time was 175 time units (leading to 25
and 87 rate updates steps). Due to the heterogeneous
nature of the loop delays, the results are hardly
comparable with the AIMD trajectory in fig. 1 – in fact,
from the trajectory shown in fig. 2, it is immediately clear
that AIMD alone can show a very unstable behaviour.
Thus, time invariant analytical models of AIMD fairness
as in [6] can only describe the long-term average fairness
but neglect the fact that the fairness appears to be
oscillating.

Different feedback
Let us now consider the ATM ABR switch mechanism
"CAPC" ("Congestion Avoidance with Proportional
Control"). CAPC does not require any per-flow state in
routers – it does not even keep track of the number of
active flows, which is typically necessary in order to
achieve fairness. The mechanism is described in [11] as
follows:

rate = count / interval
delta = 1 - rate / r0
if delta >= 0

U 2SER

User 1
-0.0500

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

Fig. 2: AIMD with asynchronous loop delay

U 2SER

User 1
-0.0500

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

Fig. 3: The "CAPC" ATM ABR switch mechanism

ERX = 1 + delta * Rup
ERX = min(ERX, ERU)

else
ERX = 1 + delta * Rdn
ERX = max(ERF, ERF)

ERS = ERS * ERX

count is a traffic counter which is increased upon each
cell arrival; if it overflows, the above code is executed and
the time since the last function call is given by interval.
r0 is called the "target rate" – the system load is supposed
to converge to r0. ERU and ERF are constants which
serve as an upper and lower limit, respectively, and Rup
and Rdn are constants which, as we will see later,
represent a trade-off between the speed of convergence
and the robustness of the system against load fluctuations
and the magnitude of supported round-trip-times. ERS,
initially set to "some nice value, say R0 / 10" [11], is
eventually fed back to the end systems.

CAPC achieves convergence to efficiency by increasing
the rate proportional to the amount by which the traffic is
less than the target rate and vice versa. The additional
scaling factors and the upper and lower limit ensure that
the fluctuations diminish with each update step. We
implemented CAPC in our simulator; an example
trajectory is shown in fig. 3. It is plain to see that fairness
is achieved by initially setting all sources to the same
value. ERS is always updated multiplicatively; it is
argued in [8] that multiplicative rate updates are normally
regarded as "aggressive" while they should be seen as
"proportional to the current load". As we have seen in
section 2, multiplicative rate updates do not change the
fairness in the synchronous case. Therefore, CAPC does
not leave the fairness line if the round-trip-times are
equal. In the case of fig. 3, the round-trip-times were 2

and 3, which accounts for minor perturberations, which
are larger for more diverse round-trip-times.

Interactive experiments with the simulator have shown
that increasing Rup and Rdn slightly leads to faster
convergence but greater deviation from the fairness line.
Increasing Rup and Rdn more drastically makes the
mechanism unstable: even minor differences between the
round-trip-times then prevent CAPC from converging.
This seems to explain the fact that there are different
proposed parameter values for LAN/MAN and WAN
scenarios in [11].

Since we restricted our observations to the case of two
users, we can use very simple additional analytic methods
based on a two-dimensional vector space. For instance,
for a given point (system state) p, the distance d from
optimality o is just the Euclidian distance:

2
22

2
11)()(xxxx popod −+−=

Figure 4 shows the development of the distance from
optimality for the CAPC trajectory in fig. 3. From this
figure, it is easy to see that CAPC approaches optimality
in an asymptotic manner.

A greater degree of realism
The TCP protocol contains many more features than
AIMD: it is a window-based protocol, which accounts for
a certain stop-and-go behaviour (the sender is
consecutively granted specific amounts of data and not
just informed about a feasible transmission rate); this
accounts for a stabilizing effect known as “ack-clocking”:
basically, when the system reaches equilibrium, a TCP
sender should only send n data packets into the “pipe”
when n packets have arrived at the receiver. This is also
called the “conservation of packets” principle and is
motivated by the general physics of flow [1].

We can use the vector representation method to observe
how the underlying AIMD behaviour is distorted in a
more realistic scenario – e.g., two TCP flows sharing a
bottleneck link in the well known network simulator “ns”
[12]. One such trajectory is shown in fig. 5 (fig. 7 shows
the corresponding bandwidth/time plot); the movement
looks similar to some trajectories we saw in our small
diagram based simulator. It is hard to tell whether this
behaviour is a result of queuing delay, the additional
mechanisms in TCP or both.

We used the diagram to demonstrate a different effect: the
impact of the Active Queue Management mechanism
RED on TCP. Other than traditional DropTail queueing,
RED introduces two queue length thresholds, min_th and
max_th. If the queue length is smaller than min_th,
packets will pass through unharmed. If max_th is
exceeded, packets are dropped. If the queue length is in
between min_th and max_th, a probabilistic marking

Distance

Time

50.0000

100.0000

150.0000

200.0000

250.0000

300.0000

350.0000

400.0000

450.0000

500.0000

550.0000

0.0000 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000

Fig. 4: CAPC distance from the optimal point

function is applied. This function contains some
randomness, which is the key to avoid traffic phase effects
(unwanted synchronization of flows) [13].

Figure 6 shows the trajectory for the very same scenario,
but with RED instead of DropTail queueing. The
corresponding bandwidth/time plot is shown in fig. 8.
Evidently, the behaviour of TCP is “tamed” by RED –
there are less dramatic fluctuations. The traditional way of
comparing traffic flows would be to study the difference
between figs. 7 and 8, but the differences between those
figures is rather subtle. On the other hand, fig. 5 very
clearly shows more fluctuations than fig. 6.

5. CONCLUSION

We have presented novel methods of using the vector
representations of distributed control systems described in
[11]. Three examples demonstrated the benefit of vector
diagrams in analysis and design. We consider vector
diagrams a powerful tool and hope that the ideas
presented in this paper will support others in finding their
own extensions for their specific use.

Our work is restricted to the context of congestion control
in computer networks. We expect our method to be
applicable to a much broader spectrum of control
problems; this is a matter of future research.

6. ACKNOWLEDGEMENT

The idea of implementing a Chiu/Jain vector diagram
simulator to study asynchronous loop delays was
contrived by Ralf Hauber during lunch. This method led
to the other extensions presented in this paper and can
therefore be regarded as the primary reason for its
existance. Also, the author is indebted to Andrew
Barnhart for sending a hard copy of his CAPC ATM
Forum Contribution.

REFERENCES

[1] V. Jacobson, Congestion Avoidance and Control,
Proc. SIGCOMM '88, Palo Alto, CA, 1988.

[2] J. H. Saltzer, D. P. Reed, & D. D. Clark, End-to-End
Arguments in System Design, Proc. Second International
Conference on Distributed Computing Systems, 1981,
509-512.

[3] D. Chiu and R. Jain, Analysis of the Increase/Decrease
Algorithms for Congestion Avoidance in Computer
Networks, Journal of Computer Networks and ISDN,
17(1), 1989, 1-14.

[4] D. G. Luenberger, Introduction to Dynamic Systems -
Theory, Models, and Applications (John Wiley & Sons,
New York 1979).

 [5] R. Johari & D. Tan, "End-to-End Congestion Control
for the Internet: Delays and Stability". To appear in IEEE
Transactions on Networking.

 [6] Milan Vojnovic, Jean-Yves Le Boudec, & Catherine
Boutremans, Global fairness of additive-increase and
multiplicative-decrease with heterogeneous round-trip
times, Proc. IEEE Infocom 2000.

[7] Injong Rhee, Volkan Ozdemir, & Yung Yi, TEAR:
TCP emulation at receivers -- flow control for multimedia
streaming, Technical Report, Department of Computer
Science, NCSU. Available from:
http://www.csc.ncsu.edu/faculty/rhee/export/tear_page/

[8] S. Gorinsky & H. Vin, Additive Increase Appears
Inferior, Technical Report TR2000-18, Department of
Computer Sciences, University of Texas at Austin.

[9] D. Bansal & H. Balakrishnan, Binomial Congestion
Control Algorithms, Proc. IEEE INFOCOM 2001.

[10] K. Ramakrishnan & S. Floyd, A Proposal to add
Explicit Congestion Notification (ECN) to IP, RFC 2481,
January 1999.

[11] A. W. Barnhart, Explicit Rate Performance
Evaluations, ATM Forum Technical Committee, Traffic
Management Working Group, Contribution ATM
Forum/94-0983 (October 1994).

[12] S. McCanne & S. Floyd, ns Network Simulator,
http://www.isi.edu/nsnam/ns/

[13] S. Floyd & V. Jacobson, Random Early Detection
Gateways for Congestion Avoidance, IEEE/ACM
Transactions on Networking, 1(4), 1993, 397-413.

TCP 2

TCP 1

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

4.5000

5.0000

5.5000

6.0000

6.5000

7.0000

7.5000

8.0000

8.5000

9.0000

9.5000

10.0000

2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000

Fig. 5: Vector diagram of two TCP sources
sharing the same bottleneck with DropTail
queueing

TCP 2

TCP 1

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

4.5000

5.0000

5.5000

6.0000

6.5000

7.0000

7.5000

8.0000

8.5000

9.0000

9.5000

10.0000

2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000

Fig. 6: Vector diagram of two TCP sources
sharing the same bottleneck with RED queueing

Fig. 7: Bandwidth / time plot of two TCP sources
sharing the same bottleneck with DropTail
queueing

Tcp 2

Bandwidth

Time

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

11.0000

12.0000

13.0000

14.0000

15.0000

0.0000 10.0000 20.0000 30.0000 40.0000 50.0000 60.0000

Tcp 1
Tcp 2

Bandwidth

Time

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

11.0000

12.0000

13.0000

14.0000

15.0000

0.0000 10.0000 20.0000 30.0000 40.0000 50.0000 60.0000

Tcp 1

Fig. 8: Bandwidth / time plot of two TCP sources
sharing the same bottleneck with RED queueing

