
VisualGraph – A Graph Class Designed for Both Undergraduate

Students and Educators

Jeff Lucas

U Wis. Oshkosh, USA

lucasj13@uwosh.edu

Thomas L. Naps

U Wis. Oshkosh, USA

naps@uwosh.edu

Guido Rößling

Darmstadt U Techn., Germany

roessling@acm.org

Abstract

Graphs and graph algorithms play an important role in un-
dergraduate data structures and algorithms courses. How-
ever, they often also represent the first case where both the
correctness and the underlying concepts of the algorithms
are not evident. Both students and educators can there-
fore benefit from a simple yet expressive tool for coding
graph algorithms and then conveniently visualizing them.
We present such a tool, derived from a set of instructional
requirements, and give an example application.

Categories & Subject Descriptors

K.3.2 Computers & Education: Computer & Information
Science Education - Computer Science Education

General Terms

Algorithms

Keywords

Visualization, Animation, Pedagogy, CS 1, Graphs

1 Introduction

Graphs and graph algorithms are one of the more advanced
topics typically covered in an undergraduate course on data
structures and algorithms. Early in such a course, students
will have been exposed to programming with pointers and
recursion, usually by coding lists and trees. Thus, the focus
of teaching graph algorithms often lies less on learning new
programming techniques than on solving given problems.

The additional challenge of graph algorithms is that the typ-
ical algorithms are based on concepts that are deeper than
students have previously studied. Even subtle aspects of
advanced algorithms that students have encountered before

Permission to make digital or hand copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
require prior specific permission and/or a fee.
SIGCSE 2003, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002....$5.00

– such as Quicksort partitioning – usually have a concept
which can be explained within one or two sentences and is
still relatively easy to understand. However, this is not true
for many graph algorithms. Indeed, graph algorithms may
be the first type of algorithms encountered by students that
is not “obviously correct”. Consider for example the order
of the loops for Floyd’s all-pairs shortest path algorithm,
where the outer loop concerns the intermediate path vertex
rather than the starting vertex.

Programming assignments that accompany the graph com-
ponent of the course should allow the students to focus their
energies upon understanding the more conceptual techniques
rather than struggling with low-level implementation details
of a graph data type. Typically, such an implementation is
carried out using adjacency lists or adjacency matrices, nei-
ther of which will expose the student to anything substan-
tively new from a coding perspective. Nor should the student
have to climb an exceedingly complicated learning curve to
understand the interface for a graph class library that is
oriented to industrial-strength applications. Certainly such
libraries have their place in courses that want to empha-
size rigorous software engineering methodologies. But, in
the course goals emphasized here, having students struggle
more than necessary with a class interface only detracts their
attention from the problem-solving and analysis techniques
upon which they should be focusing.

Based on these premises, Section 2 presents a detailed break-
down of the requirements for the “ideal” graph class library
to use in an undergraduate algorithms and data structure
course. A set of existing libraries and software packages is
evaluated in Section 3. As the regarded packages did not
fully match our requirements, we present our own class li-
brary in Section 4. Section 5 illustrates how easy using the
class library is for students and educators. Finally, Section
6 outlines future directions for research and development.

2 Requirements for an Educational Graph Library

2.1 Student Requirements

Basic graph operations

These operations let students implement a wide variety of
graph algorithms using operations analogous to what they
would find in textbook-style pseudo-code.

Set/query global graph attributes. Users should be able to set
and then query two global graph attributes – directedness
and weightedness. In a directed graph all edges are directed.
Thus, a bidirectional edge is really two edges – one in each
direction. If the graph is weighted, all edges must have a
numerical weight.

Graph-editing operations. Four graph-changing operations
are essential for all graphs – add or remove a vertex, and

add or remove an edge. For weighted graphs, users must
also be able to set the weight of an edge to a particular
value.

Vertex- and edge-querying operations. Users require an oper-
ation that, given two vertices, returns a boolean indicating
whether or not an edge exists from one to the other. For
weighted graphs, students must also be able to query the
weight of an edge. Our focus on making it easy for under-
graduates to code algorithms means that the vertex data
type can be a simple enumeration such as characters.

Graph generation operations

Once a student has implemented the algorithm, inputting
data to both test and experiment with the algorithm is vi-
tal. As graphs are a visually oriented data structure, requir-
ing students to input a graph in textual fashion is counter-
intuitive and awkward. We propose three basic modes for
graph generation.

Interactive input. When called, this operation pops up a
simple GUI that allows students to establish the two global
graph attributes established above (directed/undirected and
weighted/unweighted) and then point-and-click their way
through the entry of vertices and edges. Because data in
vertices are characters, vertices are automatically labeled
with the next available character when the student picks a
location for the vertex.

Random graph generation. Even with interactive input
based on a GUI, entering a graph suitable for a particular
problem can be time-consuming. It is therefore advanta-
geous if the graph library itself can also generate random
graphs that can then be used to test student-written algo-
rithms. Of course, such generation cannot be completely
random but must be subject to constraints determined
by the problem being solved. Among these constraints
are three shared by all graphs – weighted/unweighted, di-
rected/undirected, and number of vertices or edges. Four
additional constraints are then related to the specific type
of graph to be generated – connected graphs, directed
acyclic graphs, graphs with Hamiltonian cycles, and com-
plete graphs.

Input from and output to a file. Once generated using ran-
dom constraints or via the GUI, the graph must be writable
to a file format that can later be read. This allows both
students and educators to conveniently build up a suite of
graphs to use as test data for a particular algorithm and to
compare two algorithms solving the same problem on iden-
tical data sets.

Graph animation operations

Because graph algorithms are inherently visual in nature,
it is natural for students to want to view the output of
their work as an animation of the algorithm they have im-
plemented. Recent research [1, 10] indicates that the most
effective instructional use of algorithm animation may oc-
cur when students are responsible for developing code that
produces the animation. There should be two modes that
enable students to create their own animated algorithms.
The first of these should make it nearly effortless to produce
an “unadorned” animation in which no use of color or high-
lighting is used to explain the executing algorithm. In this
unadorned mode, the graph class should produce a picture
of the current state of the graph each time a “print graph”
operation is called.

Creating an unadorned animation should thus be as easy
for the student as the process of inserting tracer output to
debug a program. The student merely needs to identify key
points in the execution of the algorithm and add a call to the
“print graph” operation. This operation is a sophisticated
one from the perspective of the implementor of the class.
This is because the resulting visual display of the graph must

be laid out in an aesthetically pleasing way that minimizes
unnecessary edge crossings and effectively displays the edge
weights for a weighted graph. We discuss some of the details
of the layout algorithm used by the VisualGraph class in
Section 4.

At a level above that of an unadorned animation, we might
want to ask students to develop a more visually effective
animation that could become part of a larger project for a
course. Here the graph class should provide a set of visually
oriented operations that again make it relatively painless to
produce such an animation. Among these operations are
(1) set the color of a vertex or edge, (2) highlight a vertex
or edge to distinguish it from other vertices, and (3) add
explanatory text at a particular location on the graphics
screen.

2.2 Educator Requirements

Since many educators may want to create instructional ani-
mations of graph algorithms for their students to explore, it
is important that a graph class designed for instructional use
offers the potential to develop such “expert-created” anima-
tions. What separates such animations from those created
by students? Recent research on engagement techniques in
algorithm animation [7] indicates that augmentation of the
animation with “engagement objects” may serve to direct
a student’s exploration of the algorithm in a more effective
way. Such objects include the use of additional graphic dis-
plays to augment the graph itself, hypertext documents that
supplement the algorithm’s animation with explanations of
what the viewer is seeing, and the use of interactive ques-
tions that force the student to predict what future states
of the animation will reveal. Although the graph library
need not include specific engagement objects such as these,
the library should encourage and make it relatively easy for
educators to stream such materials into the animation.

3 Existing Libraries and Software Packages

Until we developed VisualGraph, no graph class libraries
combined every aspect described in Section 2. Nonethe-
less, the VisualGraph class was not developed in a vacuum
and owes much to a variety of earlier work. A selection of
this work includes research in graph generation algorithms
[2], graph layout algorithms [3, 4], object-oriented graph li-
braries [5], and instructional algorithm visualization [6, 9].

The work of Johnsonbaugh and Kalin [2] was presented in
the context of a C program that generated random graphs
subject to a variety of constraints. The criteria they used to
define the graphs produced by the program are unsurpassed
in terms of producing data sets suitable to test student-
written algorithms and served as the basis by which we built
random graph generation into the VisualGraph class.

The graph library providing the richest set of operations
is certainly LEDA [5]. Apart from providing basic graph
operations, it provides the implementations of many clas-
sic graph algorithms and a set of calls to graphic functions
that are layered on the X Window system. However, al-
though it sets the standard for industrial-strength graph li-
braries, LEDA entails a very steep learning curve. Its overall
complexity is comparable to that of the Standard Template
Library in C++. Consequently, unless students are well-
versed in LEDA’s use from their work with simpler data
structures, having them use it for the first time when they
begin to study graphs will most certainly shift their focus
to language-oriented details instead of the more conceptual
algorithm analysis and experimentation that we are trying
to encourage.

Our assumption that a vertex can be labeled by a single char-
acter means that a vertex will be geometrically small and

not vary in size due to the amount of labeling data. Under
such conditions the graph layout algorithm described by Ka-
mada in [3] provides an excellent means of drawing a graph
using straight lines in such a way that edge intersections
are minimized. This minimization of edge intersections is
particularly important in weighted graphs because we must
have space for displaying the textual weight along an edge
in addition to the line that actually composes the edge. Pro-
viding all this information in a way that remains legible re-
quires exceedingly judicious use of screen space. Prior to
the development of our VisualGraph class, graph display
systems employing such sophisticated algorithms had only
been available in research-oriented tools such as COOL [4].
The combination of providing such a geometric layout al-
gorithm with the ability to randomly generate meaningful
graphs for assignment problems provides students with a
rich visual playground in which to watch their algorithms
work on many varied data sets.

We chose AnimalScript [8] for implementing the graphics
in the VisualGraph class. AnimalScript is a scripting lan-
guage in which textual animation commands are written to
a file that is then parsed and rendered by the Animal ani-
mation system [8]. Animal is one of several animation en-

gines supported by JHAVÉ [6], a platform that offers such
engines the ability to intersperse instructional interaction
objects into the stream of rendering information.

4 Implementation of the VisualGraph class

As outlined above, all graph vertices in VisualGraph are
identified by a character. To support large graphs, charac-
ters go from upper to lower case, followed by digits. Ac-
cordingly, edges are identified by the character IDs of the
vertices they connect, with the first character representing
the starting vertex for directed graphs.

By default, VisualGraph generates AnimalScript output
(optimized for size) to a Java PrintWriter. The resulting

stream can then be used by JHAVÉ . Using the latest ex-

tensions of both AnimalScript and JHAVÉ , the stream
may also contain interaction elements for asking questions
about the display [6]. Because VisualGraph, AnimalScript,

and JHAVÉ are all written in Java and use text to describe
rendering information, algorithms developed in VisualGraph
and their resulting animations are portable to virtually all
environments.

Four methods support adding or removing vertices and edges
from a graph. The position of a vertex is given by Cartesian
coordinates, while the position of an edge is determined by
the vertices it joins. The color and highlighting for added
elements can be initialized. A set of auxiliary methods allows
(un-)highlighting or coloring edges or vertices, toggling the
highlight mode, and changing the weight of an edge. Apart
from querying the existence of vertices and edges and their
highlight state, the weight of a given edge can be retrieved
for weighted graphs. Graphs can be tested for being empty,
directed, or weighted.

VisualGraph can generate random graphs with certain prop-
erties, such as connected, directed acyclic, Hamiltonian,
complete, or random. Each generation method (except for
complete graph generation) requires the number of vertices
and edges. Self-loops and weights are optional, as well
as whether the graph is directed (apart from the directed
acyclic random graph). The user can also specify minimum
and maximum weights. A given graph can be saved and
loaded to and from a file.

The organizeGraph method is used to geometrically layout
the graph vertices in an aesthetically pleasing way, based on
the Kamada algorithm [3]. Vertices are first arranged around
a half-unit circle. The vertices with the highest “energy” are

then moved until their energy reaches a (local) minimum,
with the energy determined by the proximity to other nodes.
The process is repeated until the sum energy of the graph
reaches a (local) minimum. Vertices are then exchanged
to test for lower-energy arrangements. If a lower energy
state is achieved, the entire process is repeated. After thus
determining the position of all vertices, the graph is suitable
for AnimalScript display. The overall efficiency of this
process is O(V 3), where V is the number of vertices.

As illustrated in Figure 1, while the display of the graph
is usually quite good, it is not necessarily “optimal” with
regard to the number of crossing edges. However, when con-
sidering that optimal graph layout is NP-complete, this is
an acceptable compromise.

5 Example Application: Dijkstra’s Shortest Path

Consider the graph portrayed in Figure 1. This represents
VisualGraph’s depiction of a connected graph that was ran-
domly generated and then sent an organizeGraph message
so that it would be subjected to the Kamada layout al-
gorithm. Given appropriate input values for the variables
nodes (8), edges (19), selfLoops (false), weighted (true),
directed (false), minWeight (2), and maxWeight (8), only
three Java instructions are required to generate the graph
and then produce its picture:

� �
g . randomConnectedGraph (nodes , edges ,

s e l f L o o p s , we ighted , d i r e c t e d ,
minWeight , maxWeight) ; // g en e r a t e

g . o rgan i z eGraph () ; // l a y ou t
g . p r i n tG raph () ; // d i s p l a y

� �

Figure 1: Unadorned graph snapshot

Because the graph is displayed in the Animal rendering en-
gine, the user interface for walking through snapshots of
the graph is automatically equipped with a vast array of
tools, including VCR-like controls, snapshot magnification
controls, speed controls for playing the snapshots in auto-
mated slide-show mode, and stepping controls for rewinding
the algorithm’s snapshots to any point in time.

The following Java code shows how a student may implement
Dijkstra’s shortest path algorithm on such a graph:

� �
vo id l e a s t S e a r c h (V i sua lG raph g , char s t r t ,

char goa l) throws IOExcep t i on {
char nextNode , n ;
i n i tOp e nL i s t (g , s t r t) ;
do {
nextNode = findOpenNodeToExpand (g) ;
g.setNodeColor(nextNode, ”red”);
i f (nextNode != goa l) {
nodes = g.allAdjacentNodes(nextNode);
whi le (nodes . hasMoreElements ()) {
n = ((Cha rac t e r) nodes .

nextE lement ()) . cha rVa lue () ;
i f (! nodeClosed (n , g)) {

upda teS ta tu s (nextNode , n , g) ;
g.setNodeColor(n, ”green”);

}
}

}
g.printGraph(X SIZE, Y SIZE);
c loseNode (nextNode , g) ;
g.setNodeColor(nextNode, ”black”);
g.printGraph(X SIZE, Y SIZE);
} whi le (nodesLeftToExpand (g)

&& (nextNode != goa l)) ;
}

� �

Here the methods initOpenList, findOpenNodeToExpand,
nodeClosed, updateStatus, nodesLeftToExpand and closeN-
ode represent functions that implement the classic priority
queue operations for Dijkstra’s algorithm. The italicized
messages are sent to the VisualGraph object g.

Figure 2: Graph snapshot during Dijkstra’s algorithm

The allAdjacentNodes message sent to g returns a Java Enu-
meration that easily allows the student to walk through all
the vertices adjacent to the vertex called nextNode. The
setNodeColor messages are sent to g after nextNode is re-
moved from the open list and again after node n has had
its status on the open list updated. These messages color
the node removed from the open list and its adjacent nodes
red and green, respectively. Consequently, the printGraph
message to g after leaving the loop that iterates through the
Enumeration produces a snapshot that, by the use of colors,
reflects the altered state of the algorithm. The printGraph
message sent to the graph g after nextNode is closed pro-
duces the next snapshot in which closed nodes are colored
black. One of the resulting snapshots from this adornment
is shown in Figure 2.

The legend printed out below the graph in Figure 2 is an ex-
ample of how supplementary material above and beyond the
graph itself can be streamed into the animation script. To
produce this legend, the student (or educator) would have
to write a function (here called legend) that produces a Vec-
tor of Strings representing the state of the total-cost array
associated with graph vertices. The addition of the follow-
ing lines of Java code each time through the outer loop then
produces the legend in the Animal renderer. Here, anima-
tionScript is the same PrintWriter to which the VisualGraph
g is directing its rendering commands.

� �
Vector v = l egend (g) ;
f o r (i n t i = 0 ; i < v . s i z e () ; i++)

a n ima t i o n S c r i p t . p r i n t l n (” a r r ayPut \””
+ (S t r i n g) v . e l ementAt (i)
+ ”\” on \” l egend \” p o s i t i o n ” + i) ;

� �

6 Future Directions

This paper has focused on showing how easy it is for students
using the VisualGraph class to generate test data for and
produce high-quality animations of graph algorithms that
they are implementing as part of a normal assignment for
an undergraduate data structures and algorithms course.

The scope of the paper has prevented us from discussing the
details of how one would insert complicated interaction ob-
jects, such as stop-and-think questions and hyper-document
links, into an animation produced by the VisualGraph class.
Presently doing this requires annotation of the algorithm in
a fashion similar, albeit more complicated, than that used to
produce the legend in Figure 2. Detailed knowledge of the

rendering language [8] and the JHAVÉ instructional delivery
environment are required. Hence, the addition of such em-
bellishments are a time-consuming process for an instructor
(or very ambitious student) who wants to augment an ani-
mation with these interaction objects. We hope in the future
to use XML specifications for such interaction objects and
thereby “abstract away” the details of incorporating them
into an animation produced by VisualGraph.

References

[1] Hundhausen, C. D., and Douglas, S. Using Visualiza-
tions to Learn Algorithms: Should Students Construct
Their Own, or View an Expert’s? IEEE Symposium
on Visual Languages, Los Alamitos, California (2000),
21–28.

[2] Johnsonbaugh, R., and Kalin, M. A Graph Genera-
tion Software Package. In Papers of the Twenty-Second
SIGCSE Technical Symposium on Computer Science
Education (1991), ACM Press, pp. 151–154.

[3] Kamada, T. Visualizing Abstract Objects and Relations.
World Scientific Publishing, 1989.

[4] Kamada, T., and Kawai, S. A General Framework
for Visualizing Abstract Objects and Relations. ACM
Transactions on Graphics (TOG) 10, 1 (1991), 1–39.

[5] Mehlhorn, K., and Näher, S. LEDA: a Platform for
Combinatorial and Geometric Computing. Communi-
cations of the ACM 38, 1 (1995), 96–102.

[6] Naps, T., Eagan, J., and Norton, L. JHAVÉ: An En-
vironment to Actively Engage Students in Web-based
Algorithm Visualizations. 31st ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE
2000), Austin, Texas (Mar. 2000), 109–113.

[7] Naps, T. L., Rößling, G., Almstrum, V., Dann, W.,
Fleischer, R., Hundhausen, C., Korhonen, A., Malmi,
L., McNally, M., Rodger, S., and Velázquez-Iturbide,
J. Á. Exploring the Role of Visualization and Engage-
ment in Computer Science Education. To Appear in
ACM SIGCSE Bulletin 35, 1 (Mar. 2003).

[8] Rößling, G., and Freisleben, B. Program Visualization
Using AnimalScript. First International Program Vi-
sualization Workshop, Porvoo, Finland. University of
Joensuu Press (July 2001), 41–52.

[9] Rößling, G., Schüler, M., and Freisleben, B. The An-

imal Algorithm Animation Tool. 5th Annual ACM
SIGCSE/SIGCUE Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE 2000),
Helsinki, Finland (July 2000), 37–40.

[10] Stasko, J. Using Student-built Algorithm Animations
as Learning Aids. 28th ACM SIGCSE Technical Sym-
posium on Computer Science Education (SIGCSE ’97),
San Jose, California (Feb. 1997), 25–29.

