
Automatically Generating User Interfaces for Device Federations

Elmar Braun
Darmstadt University of Technology

Telecooperation Group
Hochschulstr. 10, 64289 Darmstadt, Germany

elmar@tk.informatik.tu-darmstadt.de

Max Mühlhäuser
Darmstadt University of Technology

Telecooperation Group
Hochschulstr. 10, 64289 Darmstadt, Germany

max@informatik.tu-darmstadt.de

Abstract

One of the ideas of ubiquitous computing is that com-
puting resources should be embedded ubiquitously in the
environment, making them available to any nearby users.
Some researchers have applied this to interaction, and tried
to embed an abundance of interactive devices, such as touch
screens, in rooms and whole buildings. The opposite con-
cept is that of a single personal mobile device, which users
carry at all times and use for all interactions. Because both
concepts have different strengths, we explore building in-
terfaces for federations of personal mobile and stationary
embedded devices, exploiting the capabilities of both rather
than forcing users to choose between either. We have de-
veloped an infrastructure that coordinates multiple devices
for that purpose: groups of devices work together to ren-
der a user interface. As one of the main challenges for such
federated user interfaces we have identified their authoring.
How should the interface be divided in multiple parts, and
can that decision be made by a computer rather than a hu-
man designer?

1. Introduction

The concept of ubiquitous computing has been proposed
as the natural successor to the age of personal comput-
ing. The one-to-one relationship between user and personal
computer has the drawback that interaction is bound to a
single place. Mobile devices serve only as a “last resort”
away from the desktop, and usually are complicated to use
in cooperation with personal computers. When many in-
put and output devices are embedded in the environment, as
proposed by ubiquitous computing, users should be able to
simply associate whatever means of interaction they need.

A first step in this direction was Teleporting [5]: users
could walk up to any of the computers distributed through-
out a building, use it as if it were their own. Sensors de-
tected the users’ presence near a computer, and automat-

ically displayed their personal desktop there. Our initial
idea was to extend this still rather desktop-centric con-
cept to arbitrary interaction devices. Instead of a single
self-contained device, users associate multiple components,
such as screens or speech recognizers, into a federation of
input and output channels. These components can be both
embedded devices from the environment as well as mobile
devices carried by the users. This assembly of federations
should be context sensitive; for example, voice interaction
would not be used in a noisy environment.

What is the benefit of such federations? From the point
of view of users of mobile devices, the capabilities of as-
sociated devices can be used to work around the limitations
inherent to mobile devices. For example, an application that
is constrained by small screen size can “overflow” into the
additional space of an associated public display that is asso-
ciated temporarily on demand.

It may seem that environments with generously embed-
ded hardware suffice for convenient interaction, and do
not suffer from such limitations. But they too can benefit
from associating mobile devices, because there are situa-
tions where users cannot rely solely on the infrastructure.
Upon closer examination, embedded hardware can be quite
limited in many contexts: For example, a large and pub-
lic display may have no convenient input channel. In such
situations associated mobile devices could act as a remote
substitute. While their means of input may be far from per-
fect, they are better than none at all.

The limitation in above example could be solved by re-
placing the display with a touch screen. But not all limi-
tations are due to device insufficiencies. Input to a touch
screen is limited to the small zone from where it can be
reached. Mobile devices are usually carried within their
user’s reach, and could be used to interact with a public
screen from anywhere as long as it is in sight. There might
also be social restrictions. A large display mounted in a
public space might be visible to multiple persons. Any in-
teraction that involves private data cannot be performed on
that display. An interface that involves an additional mobile

mailto:elmar@tk.informatik.tu-darmstadt.de
mailto:max@informatik.tu-darmstadt.de

device could be split so that privacy sensitive data remains
on the private device, while the public display handles the
non-sensitive information.

How should such federated user interfaces, which use
multiple devices together, be designed? Authoring appli-
cations for desktop computers is easy insofar as the set of
input and output channels is always the same. A federa-
tion of a mobile device and a public screen has two displays
of different sizes, but no keyboard. Other federations may
contain even more exotic channels such as speech recogni-
tion. And mobile users should be able to (dis-)associate de-
vices on demand, meaning that the federation used to render
a user interface may change at runtime. In a federated user
interface ideally each of the cooperating devices should spe-
cialize on rendering that aspect of the user interface which
it is best suited for.

We have developed an infrastructure that allows render-
ing federated user interfaces on multiple devices of different
modalities, and supports changing the set of devices at run-
time. This system is described briefly in section 3. Our main
contribution is a single authoring scheme that automatically
generates federated user interfaces, even for unusual sets of
devices, out of a single device independent source. This ap-
proach is detailed in section 4. But first we will explore how
federated user interfaces relate to other forms of multiple-
device use in section 2.

2. Characteristics of Federated Interaction

In the last section we have introduced the concept of
federated user interfaces. We refer to a heterogeneous de-
vice set, such as the combination of a handheld and a wall
mounted display, as a federation. We call user interfaces
that are adapted to exploit federations federated user inter-
faces. In this section we will discuss what the main traits of
federated user interfaces are, and how they differ from other
forms of multiple-device use.

The first trait of federated interaction is, as its name im-
plies, that it deals with interactive tasks. This differentiates
it from many approaches which combine mobile and sta-
tionary devices, but not for interaction. Such concepts are
often summarized under the generic term “surrogates”. The
concept of surrogates is that limitations of mobile devices
are circumvented by offloading tasks exceeding their abili-
ties to stationary devices, called surrogates, in the surround-
ing environment. Examples are computationally intensive
tasks, or tasks requiring more memory than a mobile device
can provide. Federated interaction applies the idea of surro-
gates to interactive instead of non-interactive and invisible
tasks.

The second trait of federated user interfaces is that two
or more devices are used concurrently, rather than sequen-
tially. Sequential use of devices has also been proposed as a

way of supporting mobile users who roam in environments
augmented with public devices. Teleporting, which is one
example of this, has already been mentioned above [5]. But
federated devices deal with using two or more devices at
the same time. Of course concurrent use does not rule out
sequential use of multiple devices. A user might roam from
one federation of devices to another, or between a federation
and single devices. The system that we describe in section 3
supports this.

The third trait of federated interfaces is that the interface
is distributed to the devices in such a manner that all de-
vices play a role in the interaction. This differentiates fed-
erated interfaces from some concepts that focus on remote
control. Some researchers have proposed to use mobile de-
vices as a universal remote control that works with any ap-
pliance (e.g. [13]). Their goal is to make all functionality
controllable from a mobile device, no matter whether the
controlled device is present. The controlled device is not
used as an interaction channel. Federated interaction seeks
to employ remote (on a small scale, such as in the same
room but not within touch range) devices as an additional
interaction channel. A device within reach of the user is
then used for a “remote control” interface that allows inter-
action with the remote device. But this remote control does
not replace the remote device for the purpose of interaction,
but instead cooperates with it.

The fourth trait of federated interfaces is that the devices
in a federation are heterogeneous. Our reason for combin-
ing multiple devices to cooperatively render a user interface
is that the weaknesses of one device may be made up for
by the strengths of another. For example, when using a cell
phone together with a large wall-mounted display, the dis-
play offers no privacy and possibly also no convenient mode
of input, whereas the cell phone is limited by its small dis-
play size. The combination of both can combine the pri-
vacy and the input means of the cell phone with the display
space of the large display. In this sense federated interfaces
are a form of multimodality: the cell phone display and the
wall-mounted display have the same physical modality, but
apart from that their characteristics are so different that they
can be considered two different modalities. Besides physi-
cal modality, the distinguishing characteristics between de-
vices include for example mobility (fixed/mobile), owner-
ship (private/public), privacy (private/public), modality (vi-
sual/aural), position (near user/out of reach), and more.

3. An Infrastructure for Federated Interfaces

In order to experiment with federated user interfaces, we
have built an infrastructure that can use multiple devices
concurrently to render a user interface. The rendering is
adapted to the set of available devices in two ways. First,
not all devices need to render the same interface: different

Context
Sensors

Context
Server

PDA

Desktop

Cell Phone

Speech
Client

Detect which devices are
available to the user

User
interacts

Maintain
state across
devices

Device-adapted UI

Dialog
Manager

Device
Independent
UI Markup

Application
Code

Figure 1. Architecture sketch

devices can render different subsets of the whole interface
if appropriate. And not all devices need to render the same
part of an interface in the same way: different devices can
use different alternate renditions of the same widget. This
aspect is examined in more detail in section 4.

3.1. Overview

Our infrastructure for federated devices has three distinct
components (see Fig. 1). The first component is a central
server, also called dialog manager (DM), that coordinates
the interaction with the different devices. The DM also
creates multiple adapted versions of the UI for client de-
vices. The second component is comprised of several differ-
ent clients, which render the user interface and interact with
the user. The third component is a context server, which
collects and transforms context information from a number
of different sensors. Its services are used by the dialog man-
ager.

Overall, our architecture is similar to other architectures
that separate the model of an application from its presen-
tation, such as the model-view-controller (MVC) pattern.
The main difference is that in our architecture the presenta-
tions are not shown on the same device that hosts the model,
but distributed to multiple different client devices, while a
server hosts the model. Multiple interactive devices render
a user interface for the model (or usually different subsets
thereof), which visualizes the model and allows to modify
it.

This architecture should not be confused with the con-
cept of the X Window system [2]. The updates, which our
system sends to the client devices whenever a change in the
model occurs, contain the information how the model has
changed. The client then uses this information to update its
own particular rendition of the model. X instead updates the
rendition of the user interface locally on the device where
the application runs, and then sends out this update as draw-
ing primitives to its clients. Therefore X cannot support dif-

ferent presentations on different client devices. Even if one
connected multiple devices to the same X application, all
would display the same window. Our system allows differ-
ent presentations for different clients. For example, we can
use a voice client and a visual presentation at the same time.

Our system should also not be confused with traditional
web applications. These do separate the application code,
running on an application server, from the presentation,
which is shown as a HTML form on a remote client device.
One difference is that in our system applications are noti-
fied of input events at the same granularity as GUI toolkits.
For example, when typing into a text field the application
gets a notification for each button pressed. Thus the dia-
log manager acts like a widget toolkit that is able to place
its widgets across several devices. In contrast, web applica-
tions only get one event containing the finished form input
once the user presses the submit button.

The server in our architecture has a role that is quite dif-
ferent from a web application server. It is the coordinating
entity in a form of “virtual browser”, which uses multiple
devices concurrently to present different views of the same
application. Therefore it is not furnished by a remote appli-
cation provider, but running on a device near the user, for
example one of the client devices, to ensure that feedback
to input is shown with low latency. The application runs on
the server like an applet in a browser, rather than like a web
application.

3.2. Dialog Manager

The dialog manager has four tasks. The first task is
to synchronize the different clients when the user interacts
with them. It receives input events that change the model
from its clients, and forwards the new state of the model to
all other clients. For example, if the user selects a checkbox
on one device, renditions of the same checkbox on other
devices are updated accordingly. Besides the state of the
different widgets, the DM also synchronizes the focus. For
example, a user can set the focus to a particular widget on
one device, and then make speech input to that widget from
a different device.

The second responsibility of the DM is to manage users’
sessions. The main aspect of that is knowing which de-
vices are available. The DM obtains this information from
the context server (see 3.4). The third task of the DM is
to host the component that automatically generates user in-
terfaces for device federations out of a single source (see
section 4). These two parts of the DM work together to im-
plement context aware roaming. When the context server
signalizes that a new device has become available, the DM
calls the UI generation component. This call returns user
interfaces for the set of devices that a user currently has as-
sociated. These are then pushed to all devices including the

Dialog Manager

Client-specific
UI language

(PDA: Thinlet XML)

Common internal
XForms + XHTML
derivative

Client-specific
XSTL

style sheet

Input Events

Output Updates

Figure 2. Client operation

newly associated one.
Fourth, the DM hosts the application for which the user

interface is rendered. This application is a Java program
which is not much different from an application for single-
device GUI toolkit with an event loop. All functions de-
scribed above happen in response to events. The appli-
cation can subscribe to, modify and generate all types of
events that the DM uses. Therefore it is possible to over-
ride the automatic behavior of the other components with
application-specific code. For example, when a new device
is discovered, an application could provide a handcrafted
user interface for that device, rather than relying on the out-
put of the UI generator.

3.3. Clients

In order to try out federations with a diverse set of de-
vices, we have developed a number of clients for different
modalities. Since we want to be able to support a large va-
riety of different target devices, the effort for writing a new
client for a new type of device should be as low as possi-
ble. Therefore we attempted to reuse existing user interface
renderers as much as possible. The effort for implement-
ing a new client is thus reduced to writing a wrapper around
the existing renderer. The wrapper translates between the
events that the renderer generates and consumes, and the
events that come from and are sent out to the DM.

In order to display a concrete user interface, the device-
independent representation of the user interface first has to
be transformed into the format that the renderer for a par-
ticular device can understand. Therefore a client consists of
two parts. Besides the renderer, which runs on the device,
a transformation needs to be provided to the server. We use
XSLT for these transformations. The transformations are
performed on the server (see Fig. 2), because many of the
client devices we use have relatively little processing power
(e.g. cell phones).

We have developed a number of clients for several dif-
ferent device types. Almost all of them were implemented
by wrapping an existing renderer as described above. For

large devices, such as desktop computers and wall-mounted
displays, we use a web browser. Our first implementation
wrapped the Internet Explorer using COM. Because this so-
lution was tied to a single operating system, we developed a
second implementation that runs on most web browsers ca-
pable of running Java applets (tested with Internet Explorer,
Firefox, and Opera). The user interface is pushed to the ap-
plet as HTML, which causes the browser to displays it by
inserting it into the DOM of the page in which it is invisibly
embedded. Input to such a HTML form is intercepted by
ECMAScript event handlers, which notify the applet, which
in turn forwards the notification to the server.

Since the browser client does not run on PDAs, we de-
veloped a separate client for this type of device. It is based
on the Thinlet toolkit [1], which works on less sophisticated
Java VMs (Java 1.1 or Personal Profile), and uses a propri-
etary XML language to describe user interfaces. The XSLT
stylesheet for the PDA client simply generates Thinlet XML
from the abstract user interface fragment. The PDA ren-
derer is only responsible for pushing the user interface to
the Thinlet toolkit, and translating between the communi-
cation with the DM and the events of the toolkit.

For our cell phone client we could not rely on an exist-
ing renderer. However, because of small display size and
other limitations of cell phones, a rather simple renderer for
user interfaces with few widgets and without sophisticated
layout is sufficient. After all, the purpose of this renderer is
not to fit the whole user interface on the small cell phone
screen, but to display the small part of it, while the rest
is rendered by other, larger federated devices. Therefore
we wrote a Midlet1 that directly consumes and displays the
device-independent markup used within the DM (a simple
subset of XForms and XHTML; see section 4).

In order to include other physical modalities in our ex-
periments, we also developed a client for speech in- and
output. The associated XSLT transformation generates a
speech interface in the Java speech grammar format (JSGF).
The client is a Java program uses the Java speech API,
which processes the JSGF document and renders it using
an off-the-shelf speech recognizer. In order to be able to
provide speech interaction to mobile users, we use a head-
set that streams audio in- and output to and from a remote
desktop computer, which runs the speech recognizer, via
WLAN.

3.4. Context Server

The task of the context server is to process and store con-
text information about a user’s environment. The DM uses
the context server to discover which devices are available
to a user. Whenever a new device becomes available, the

1A Midlet is an application written for the Java 2 Micro Edition (J2ME)
Mobile Information Device Profile (MIDP).

context server sends an event to the DM, which can then
automatically push a user interface to that device. The con-
text server, and the sensor infrastructure that is required to
make use of it, are not a mandatory component of our sys-
tem. Associating a new device with a federation can also
be done by manually logging on. But a context aware in-
frastructure can relieve users of this burden, by associating
devices automatically when a user’s behavior implies that
she wants to associate a device.

For example, one of the four different sensor systems
that we currently use is IRIS by Aitenbichler [3], which
senses head position and gaze direction. This information
is used in conjunction with a world model2 to detect that a
user is looking at a device, and automatically associate it.
Our other sensor systems include infrared proximity sens-
ing, where small active badges worn by users detect when
they are facing similar tags attached to devices [7], and
Bluetooth proximity sensing.

The context server is mostly a container for widget-like
context filters. Most common context processing tasks are
already implemented as generic widgets. Therefore changes
to the context processing, such as integrating a new kind
of sensor, usually requires only configuring and connect-
ing widgets in a configuration file, rather than programming
new widgets.

For example, an IRIS event with head position and gaze
direction is first processed by a world model lookup, which
transforms this event into an event signifying association
between the user and all devices in her view. The next filter
stores this event and only forwards it if the association is
maintained for more than a few seconds, in order to avoid
associating every device a user glances at only briefly. The
next widget handles context subscriptions. The DM makes
such a subscription to the context server, requesting to be
notified whenever a user associates or dissociates a device.

4. Generating Federated Interfaces

One of the main problems for federated user interfaces
is their design. Desktop user interfaces are often designed
manually. This is possible because most desktop computers
are similar with regard to their input and output capabilities.
Therefore the designer has to create only a single version of
the user interface, and adapt it as much as possible to the
average desktop computer.

Such manual design becomes problematic when an in-
terface for more than one target device is required. For ex-
ample, an interface that is tuned for desktop computers will
usually not be usable on a cell phone. But manually design-
ing two interfaces for desktop computers and cell phones

2The world model is a 3D model of the environment which contains the
positions of all stationary devices that are available for association.

Concrete UI

Abstract UI

UI Model

Concrete UI
Device 1

Abstract UI
Device 1

Concrete UI
Device n

Abstract UI
Device n

UI Model

Mapping abstract interactors
to concrete widgets

Mapping tasks to
abstract interactors & Fission& Fission

Single Device Federated Devices

Figure 3. Comparison of development models
for single and federated devices

means double effort. Manual design therefore becomes very
costly for a large number of targeted device types.

Including device federations as “virtual target devices”
aggravates this problem even further. These target devices
are more complex than single devices because they usually
have a larger set of input and output channels with different
characteristics. Also, a large number of supported devices
causes an even larger number of possible device combina-
tions. And our system allows users to roam from one fed-
eration to another one composed of different devices at the
runtime of an application. In order to support such scenar-
ios, a human designer would have to anticipate and make
provision for any and all sets of devices that the user might
employ to interact.

Because manual authoring is obviously not a viable op-
tion for our system, we are investigating the automatic gen-
eration of user interfaces for federations from a device-
independent source. Automatically generating user inter-
faces from a single source has already been explored in or-
der to adapt interfaces to multiple different target devices.
But these schemes have often focused on adapting down-
wards: the most powerful supported device is the desktop,
and interfaces for other devices are generated by degrading
this supposedly most powerful version. A federation can
easily be more powerful than a desktop computer. For ex-
ample, it might have more than one display. The interface
generation therefore must be able to adapt upwards to such
scenarios. After considering what difference this makes to
the interface generation process in 4.1, we will discuss our
novel approach to single authoring for federations in 4.2.

4.1. Fission

Figure 3 shows a comparison of the development model
for single-device and federated-devices user interfaces. The
goal of the development is in both cases a concrete user in-

terface. The concrete UI is an interface that can be directly
executed without further transformation steps. For exam-
ple, it could be executable code bound to a concrete widget
toolkit, or a concrete markup language for which a renderer
exists.

One level above that is the abstract user interface, which
is not yet bound to a concrete toolkit or markup language.
It already specifies which types of interactors are needed,
but does not map them to concrete widgets yet. For ex-
ample, the abstract interface would refer to an abstract “se-
lect multiple” interactor where the concrete interface uses a
concrete widget such as a “javax.swing.JList” widget or a
HTML “<select>” tag.

Above the abstract interface exists another layer, which
we refer to as user interface model. It contains a defini-
tion of the user interface in an even more abstract manner.
There are different approaches to such models; frequently
used are task models describing the task to be accomplished
with the interface, rather than listing individual interactors.
Some approaches use a format similar to the abstract inter-
face with some additional annotations; others do not clearly
distinguish between the abstract interface and the model.
(See [17] for more exhaustive discussions of the topic and
related work.)

Of course not all design processes make the layers above
the concrete interface explicit to such a high degree. Of-
ten, they only exist as concept sketches and (natural lan-
guage) specification documents. When targeting a sin-
gle device, this approach is usually sufficient. The basic
idea of single authoring (also called single-source, device-
independent or multi-device authoring) is specifying these
layers in a machine-readable format. This allows to provide
tool support or to completely automate the transition from
higher levels to lower levels. This transition can then be
repeated for different target devices, thereby greatly reduc-
ing the effort for creating multiple adapted versions of the
interface for different device types.

Designing user interfaces for federated devices adds
more complexity to the design process. At some point dur-
ing the design process, it needs to be decided which parts
of the interface are to be displayed on which device. This
splitting of the interface is called fission. The term fission
comes from the area of multimodality, and is the opposite
of fusion. Fusion is the process of unifying input from mul-
tiple modalities into one logical input event. Fission is the
process of dividing one logical output act into several con-
crete outputs for multiple modalities.

The right part of figure 3 shows our interface design pro-
cess which includes fission. The mapping from the interface
model generates multiple versions of the abstract interface.
Each widget or group of widgets can be assigned to a sin-
gle or multiple devices. The benefit of assigning a widget
only to a single device is that it does not take up space on an-

(a) PDA (b) associated display

Figure 4. Example of fission with two devices

other device, which can then render other widgets. The ben-
efit of assigning a widget to multiple devices concurrently
is redundancy, which gives the user more opportunities to
perceive and interact with that widget. It is also possible
to assign widgets to multiple devices in different fidelities.
For example, a large select-one list could be displayed as a
drop-down box on a PDA, while an associated large display
shows the list as radio buttons.

4.2. Using Patterns for Fission and UI Generation

Our first experiments with federated user interfaces ex-
plored handcrafted interfaces. The experience from these
prototypes was that the question “which widget should be
assigned to which device”, i.e. the fission, depends on sev-
eral factors. One factor is of course the device types in a
federation. For example, the fission between a large display
and a handheld device depends on whether the handheld is
a cell phone or a PDA, and whether the display is touch sen-
sitive. Another factor is the application. A large form with
many text input fields would be split differently than an ap-
plication that mostly displays information and requires no
input. Other forms of context may play a role as well, as for
example whether the user is alone or in public.

The experiences from these designs were recorded in a
design pattern format. We refer to them as pre-patterns be-
cause the purpose of design patterns is to capture proven
solutions, which do not yet exist for federated interfaces.
However, the advantages of the pattern format led us to ap-
ply it here nonetheless (see [6] for a discussion of the advan-
tages of user interface design patterns). Currently we are
validating and refining some of these pre-patterns through
user studies.

Figure 4 shows an application to which the simple pat-
tern “Remote Presentation” was applied. The pattern is ap-
plicable to user interfaces which consist to a large part of
a presentation that does not directly require input, and a
smaller part that is used to control that presentation. Ex-

amples are applications that display photos, presentation
slides, or a map as shown in figure 4. It requires two de-
vices: one device should be a large display; the other can be
any device that is convenient for the user to operate, such
as a PDA which is carried by and therefore conveniently
within reach of the user. The fission strategy of the pat-
tern is simply to assign the presentation to the large display,
and put the control part on the other device, which serves
as a remote control. This can be seen in figure 4: the PDA
renders the scrolling and zooming controls, and the map is
displayed by an associated large display.

While the patterns give us tools for the manual design
of federated user interfaces, they do not yet solve the prob-
lem of automating the fission. The fission rules of a single
pattern can be implemented, but since patterns are context-
specific, that results in a fission which only applies to that
particular context. One option is to let the designer of an
interface pick a pattern by hand. This may be appropriate
when the pattern choice depends only on the application.
But the designer cannot foresee other forms of context, such
as which devices are going to be used. We do not believe
it to be feasible to require the designer to anticipate all con-
texts in which an application might be used, and select the
correct pattern individually for each situation.

In our approach to fission (see Fig. 5) the pattern choice
is not a decision that the designer is required to make, but a
step in the automatic interface generation that precedes the
fission. The implementation of each pattern does not only
consist of an algorithm that assigns widgets to devices, but
also of conditions that determine whether a pattern applies
to a certain device federation and user interface. The first
step of the fission process checks these conditions for all
available patterns, and chooses the appropriate ones.

As the base authoring format we use a small subset of
XForms [9] and XHTML. In addition, we have a number
of custom tags and attributes, which are evaluated by the
patterns. This includes: ranking the importance of widgets
to decide which to place in the most prominent location;
marking widgets as output-only so that they may be placed
on displays without convenient input; expressing prefer-
ences regarding physical modality, which influence whether
a widget may be rendered by voice; expressing relations be-
tween widgets, so that widgets that belong together are not
torn apart; and specifying privacy preferences for widgets,
so that no private information is assigned to a publicly visi-
ble (or audible) output channel.

In the next step, each pattern can register its preference
for assigning a widget to one or more devices. There are
additional auxiliary patterns, which implement guidelines
that always should be considered in fission, but are not part
of any other pattern. One example for that is the guide-
line “never assign privacy-sensitive information to a public
output channel”. Because different patterns may have dif-

ferent preferences, there is a mechanism for ranking their
votes. For example, if the map application shown in figure 4
had a private output-only address field, the remote presenta-
tion pattern would assign it to the large display, but a higher
ranking vote from the auxiliary privacy pattern would make
sure that it is assigned to the PDA.

In the next step, the decisions of the different patterns
are arbitrated. This step also makes some common sense
checks, such as assuring that each widget is rendered by
at least one device. Then the abstract interfaces for each
device are generated from the output of the fission pro-
cess. The output format is the same subset of XHTML and
XForms as used for the interface model, but stripped of the
custom attributes that were only required for the fission.

5. Related Work

The idea of using multiple devices together has first been
introduced by Robertson [16]. A number of other projects
have also explored using personal mobile devices together
with larger stationary devices. Examples are Pebbles [12]
and Rekimoto’s work on combining handhelds and white-
boards [15]. These projects designed a small number of
applications for one fixed set of devices, rather than trying
to find a method of automatically generating user interfaces
for arbitrary applications on arbitrary device sets.

The concept of a web browser that interacts through mul-
tiple devices concurrently has been implemented before by
Kleindienst et.al. [10] and Coles et.al. [8]. A similar con-
cept is also outlined in the W3C Multimodal Interaction
Framework [11]. However, to our knowledge none of these
implementations have provided a solution for the authoring
problem. Authoring web interfaces for them usually en-
tails authoring a separate document for each of the involved
devices. Changing the employed set of devices during in-
teraction, and therefore the possibility of roaming to other
devices, has also not been considered.

The SS/CD project [14] renders multimedia on multi-
ple federated devices, which are automatically chosen from
the devices available in the user’s environment. The idea
of federating devices and selecting those devices based on
the user’s context is similar to ours. However, the fission
of multimedia (such as a movie) is considerably different
from the fission of a user interface. Since the modalities of
a multimedia presentation are already predetermined, fis-
sion is reduced to mapping modalities to the best available
output device. For example, the fission of a movie simply
means directing the audio output to an audio device, and the
video output to a display.

Bandelloni and Paternò have built a system that synchro-
nizes interaction in a federation of exactly two devices [4].
The interface is split up into a control part and a visual-
ization part, which is similar to our remote presentation

W
idget 1

...

Device 1

Device 2

...

W
idget

n

Device n

W
idget 1

...

Device 1 0.9 0.9

Device 2 0.2 0.8

...

0.8 0.2

W
idget

n

Device n

User Interface
ModelFrom

Application

Device
Descriptions

From
Context Server

Applicable
Patterns

Abstract Interface
Device n

Abstract Interface
Device 2

Abstract Interface
Device 1

To Client
Transformation

● Each widget rendered
at least once?

● No device assigned
more than it can fit?

Arbitration of
different patterns

Figure 5. The automatic fission process

pattern. The visualization can migrate to migrate to other
devices, while the control cannot roam to other devices.
This system uses task models to author user interfaces in
a device-independent manner.

6. Summary

In this paper we have addressed the problem of interact-
ing with federations of multiple devices in the “countless
appliances pervading the workspace” paradigm of ubiqui-
tous computing. We have presented our architecture which
allows seamless roaming between different types of devices
and federations thereof. We have also presented a novel
scheme for the automatic generation of user interfaces from
a device-independent source. This includes automatic fis-
sion of a single interface to a federation of multiple devices.
Our scheme is based on patterns. Since the set of patterns is
not hard coded, existing patterns can be modified and new
patterns be added anytime.

References

[1] Thinlet Home Page. http://thinlet.
sourceforge.net.

[2] X.Org Foundation Home Page. http://www.x.org.
[3] E. Aitenbichler and M. Mühlhäuser. An IR Local Position-

ing System for Smart Items and Devices. In Proceedings
of the 23rd IEEE International Conference on Distributed
Computing Systems Workshops (IWSAWC03), pages 334–
339. IEEE Computer Society, May 2003.

[4] R. Bandelloni and F. Paternò. Flexible Interface Migration.
In J. Vanderdonckt, N. J. Nunes, and C. Rich, editors, IUI
’04: Proceedings of the 9th international conference on In-
telligent User Interfaces, pages 148–155. ACM Press, Jan.
2004.

[5] F. Bennett, T. Richardson, and A. Harter. Teleporting – Mak-
ing Applications Mobile. In Proceedings of 1994 Workshop
on Mobile Computing Systems and Applications, Dec. 1994.

[6] J. Borchers. A Pattern Approach to Interaction Design. John
Wiley & Sons Ltd, Mar. 2001.

[7] E. Braun, G. Austaller, J. Kangasharju, and M. Mühlhäuser.
Accessing Web Applications with Multiple Context-Aware

Devices. In M. Matera and S. Comai, editors, Engineering
Advanced Web Applications, pages 353–366. Rinton Press,
Dec. 2004.

[8] A. Coles, E. Deliot, T. Melamed, and K. Lansard. A Frame-
work for Coordinated Multi-Modal Browsing with Multiple
Clients. In WWW ’03: Proceedings of the Twelfth Inter-
national Conference on World Wide Web, pages 718–726.
ACM Press, May 2003.

[9] M. Dubinko, L. L. Klotz, Jr., R. Merrick, and T. V.
Raman. XForms 1.0, W3C Recommendation 14
October 2003. http://www.w3.org/TR/2003/
REC-xforms-20031014/, Oct. 2003.

[10] J. Kleindienst, L. Seredi, P. Kapanen, and J. Bergman.
Loosely-coupled approach towards multi-modal browsing.
Universal Access in the Information Society, 2(2):173–188,
June 2003.

[11] J. A. Larson, T. V. Raman, and D. Raggett. W3C
Multimodal Interaction Framework, W3C Note 06
May 2003. http://www.w3.org/TR/2003/
NOTE-mmi-framework-20030506/, May 2003.

[12] B. A. Myers. Using Handhelds and PCs Together. Commu-
nications of the ACM, 44(11):34–41, Nov. 2001.

[13] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Har-
ris, R. Rosenfeld, and M. Pignol. Generating remote control
interfaces for complex appliances. In Proceedings of the
15th annual ACM Symposium on User Interface Software
and Technology (UIST ’02), pages 161–170. ACM Press,
Oct. 2002.

[14] T.-L. Pham, G. Schneider, and S. Goose. A Situated Com-
puting Framework for Mobile and Ubiquitous Multimedia
Access Using Small Screen and Composite Devices. In Pro-
ceedings of the 8th ACM international conference on Multi-
media, pages 323–331. ACM Press, 2000.

[15] J. Rekimoto. A Multiple Device Approach for Support-
ing Whiteboard-Based Interactions. In Proceedings of the
SIGCHI conference on Human Factors in Computing Sys-
tems (CHI ’98), pages 344–351. ACM Press, Apr. 1998.

[16] S. Robertson, C. Wharton, C. Ashworth, and M. Franzke.
Dual Device User Interface Design: PDAs and Interactive
Television. In Proceedings of the SIGCHI conference on
Human Factors in Computing Systems (CHI ’96), pages 79–
86. ACM Press, Apr. 1996.

[17] A. Seffah and H. Javahery, editors. Multiple User Interfaces,
Cross-Plattform Applications and Context-aware Interfaces.
John Wiley & Sons Ltd, Nov. 2003.

http://thinlet.sourceforge.net
http://thinlet.sourceforge.net
http://www.x.org
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/
http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/

	. Introduction
	. Characteristics of Federated Interaction
	. An Infrastructure for Federated Interfaces
	. Overview
	. Dialog Manager
	. Clients
	. Context Server

	. Generating Federated Interfaces
	. Fission
	. Using Patterns for Fission and UI Generation

	. Related Work
	. Summary

