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Abstract. In this paper we present a binary graph classifier (BGC)
which allows to classify large, unweighted, undirected graphs. The main
idea of this classifier is to decompose a graph locally in generalized trees
forming the tree set of a graph and to compare the tree sets of graphs by
a generalized tree-similarity algorithm (GTSA). We apply our BGC to
networks representing co-expressed genes from DNA microarray experi-
ments of cervical cancer and demonstrate, that different tumor stages of
the disease can be distinguished on this level of description.

1 Introduction

The structural comparison and classification of graphs and networks is an impor-
tant and still outstanding problem if the size of these objects becomes large in
the number of nodes and edges. Traditional investigations dealing with distances
of graphs are based on isomorphic relations and subgraph isomorphism [13, 17],
respectively. An example of such a graph distance is the well-known Zelinka-
distance [20]. The Zelinka-distance is based on the principle that two graphs
are more similar, the bigger the common induced isomorphic subgraph is. In
other words, graphs which have a large common induced isomorphic subgraph
have a small distance and vice versa. Zelinka was the first to introduce this
measure for unlabeled graphs. Sobik [15, 16] and Kaden [8, 9] generalized this
measure for arbitrary (also labeled) graphs of different order and proved that it
is a metric.

In this work we present an extention of our recently introduced binary graph
classifier (BGC) [6] which allows to classify large, unweighted, undirected graphs.
This classifier is based on a local decomposition of the graph for each node in
generalized trees, which are unlabeled, hierarchical, and directed graphs [12]. The
main idea of this similarity measure is based on the derivation of property strings
for each generalized tree and then to align the property stings representing the
trees by a dynamic programming [1] technique. From the resulting alignment one
obtains a value of the scoring function which is minimized during the alignment
process. The similarity of two generalized trees will be expressed by a cumulation
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of local similarity functions which weighs two types of alignments: out-degree
and in-degree alignments on a generalized tree level. We call this method the
generalized tree-similarity-algorithm (GTSA). The obtained trees, forming the
tree set of the graph, are then pairwise compared by the GTSA and the resulting
similarity scores determine a characteristic similarity distribution of the graph.
Classification in this context is defined as mutual consistency for all pure and
mixed tree sets and their resulting similarity distributions in a graph class.

An application for our BGC is provided by the data from DNA microarray
experiments. This technique allows the monitoring of the expression level of
thousands of genes simultaneously. Based on the obtained data it is possible to
reconstruct the underlying regulatory network representing co-expressed genes.
With respect to the classification of tumors of different disease stages, one could
hypothesis, that the network of co-expressed genes should reflect the molecular
modifications due to the disease. This can hold of course only for diseases which
classification is possible on a molecular level measured by DNA microarrays.
The work by Golub et.al. [7] showed, that this classification is possible for
cancer for acute mzeloid leukemia and acute lymphoblastic leukemia. Recent
publications by Lapoointe et.al [11] and van’t Veer et.al. [18] confirmed
this result for prostate and breast cancer. The results of [7, 11, 18] demonstrate
only, that the molecular level measured by DNA microarray experiments seems
to be appropriate for the distinction of different cancer stages. They do not
compare the networks of co-expressed genes itself but select a subgroup of genes
according to some criteria and judge based on these feature vectors. See e.g. [3]
for a description of the technical details for some commonly used methods. In this
work we make an attempt to investigate the question, if the distinction of cancer
of different stages can be made on the level of co-expressed gene networks by
comparing these networks. Hence, we are utilizing a view from system theory [2]
by treating the system under investigation as a whole, in our case as a network.

This paper is organized in the following way. First, we explain in section (2)
the construction of the similarity measure and the generalized tree-similarity-
algorithm (GTSA). Then we show in section (3) how we use the GTSA to define
a binary graph classifier (BGC) for undirected, unweighted graphs. In section (4)
we present results for the classification of networks representing different stages
of cervical cancer. For our analysis we use the data from Wong et.al. [19].

2 Comparison of generalized trees

In this section we give a short explanation of the generalized tree-similarity-
algorithm (GTSA) we introduced in [4].

In figure 1 we depicted an example of two generalized trees. One can clearly
see, that this is a hierarchical, directed graph. We represent each tree Ĥk as

string sequences SĤk

i for each level i:

SĤ1

0 := vĤ
1

0 , (1)

SĤ1

1 := vĤ
1

1,1 ◦ vĤ
1

1,2 ◦ · · · ◦ vĤ
1

i,σĤ1

1

, (2)
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Fig. 1. Two simple examples of generalized trees. Each vertex sequence of the form
vi,1, vi,2, . . . , vi,σi induces sequences of out- and in-degrees.

... (3)

SĤ1

h1
:= vĤ

1

h1,1 ◦ vĤ
1

h1,2 ◦ · · · ◦ vĤ
1

h1, σh1
, (4)

and

SĤ2

0 := vĤ
2

0 , (5)

SĤ2

1 := vĤ
2

1,1 ◦ vĤ
2

1,2 ◦ · · · ◦ vĤ
2

1,σĤ2

1

, (6)

... (7)

SĤ2

h2
:= vĤ

2

h2,1 ◦ vĤ
2

h2,2 ◦ · · · ◦ vĤ
2

h2, σh2
, (8)

Here, σi is maximal in the sense that there is no other vertex sequence such

that vi,1, vi,2, . . . , vi,σ̂i
with σ̂i > σi. vĤ

k

i,j is the j’th vertex on the i’th level of

tree Ĥk and hk is the depth of the corresponding tree. The structural similarity
between Ĥ1 and Ĥ2 is then defined via the optimal alignment (alignments of

out-degree and in-degree sequences) of these string sequences SĤk

i on each level.
That means, the more similar with respect to a cost function α the out-degree
and in-degree sequences on the levels i are, the more similar is the common
structure of the trees. The dynamic programming algorithm with complexity
O(|V̂1| · |V̂2|) for finding the optimal alignment of the sequences is described in
detail in [4]. Here we give only a short discussion of this algorithm. We start by
a definition of a distance measure.

Definition 1. Let X be a arbitrary set. A positive real function ω : X ×X −→
[0, 1] is called distance measure, if

– ω(x, y) = ω(y, x) ∀x, y ∈ X.
– ω(x, x) = 0 ∀x ∈ X.

If we set ω(x, y) := 1 − e−
1
2

(x−y)2

σ2 , we obtain immediately

Lemma 1. ω : IR × IR −→ [0, 1] is defined by ω(x, y) := 1 − e
− 1

2
(x−y)2

σ2 . ω is a
distance measure.
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Proof. From the definition of ω(x, y) we infer ω(x, y) ∈ [0, 1], ∀x, y ∈ IR and
ω(x, x) = 1−1 = 0, ∀x ∈ IR. Since (x−y)2 = (y−x)2, ∀x, y ∈ IR, the symmetry
condition holds.

Within the GTSA the alignments have both global and local significance. First,
the sequence alignments will be implemented in a global sense, to compute the
optimal alignment between the sequences

SĤ1

0 , SĤ1

0 , . . . , SĤ1

h1
and SĤ2

0 , SĤ2

1 , . . . , SĤ2

h2
.

Now we define

αout
(

vĤ
1

i1,j1
, vĤ

2

i2,j2

)

:=

{

ωout
(

δout(v
Ĥ1

i1,j1
), δout(v

Ĥ2

i2,j2
), σ1

out

)

: i1 = i2

+∞ : else ,
(9)

0 ≤ ik ≤ hk, 1 ≤ jk ≤ σik
, k ∈ {1, 2}, where ωout(x, y, σk

out) := 1 − e
− 1

2
(x−y)2

(σk
out)

2

,

x, y, σk
out ∈ IR, and

αout
(

vĤ
1

i,j1
,−

)

:= ωout
(

δout(v
Ĥ1

i,j1
), ξ, σ2

out

)

, (10)

αout
(

−, vĤ
2

i,j2

)

:= ωout
(

ξ, δout(v
Ĥ2

i,j2
), σ2

out

)

. (11)

ξ > 0 prevents an alignment between two leaves being better evaluated as an

alignment between a leaf and a gap (’-’). With ωin(x, y, σk
in) := 1 − e

− 1
2

(x−y)2

(σk
in)2

we define analogously αin
(

vĤ
1

i1,j1
, vĤ

2

i2,j2

)

, αin
(

vĤ
1

i,j1
,−

)

and αin
(

−, vĤ
2

i,j2

)

. The

alignments will be evaluated on the levels of the generalized trees. Second, for
evaluating the alignments on each level (local alignments), we set

align
(

vĤ
1

i,j1

)

:=

{

vĤ
2

i,j2
: align−1

(

vĤ
2

i,j2

)

= vĤ
1

i,j1

− : else.
(12)

This mapping determines for a vertex vĤ
1

i,j1
the vertex vĤ

2

i,j2
during the traceback

[4]. On the basis of the functions αout, αin we define analogously α̂out, α̂in.
The parameters of α̂out and α̂in are now denoted by σ̂1

out, σ̂
2
out and σ̂1

out, σ̂
2
out,

respectively. Furthermore we state

γout

Ĥk (i) :=

∑σk
i

j=1 α̂out

(

vĤ
k

i,j , align
(

vĤ
k

i,j

))

σk
i

, (13)

γin

Ĥk(i) :=

∑σk
i

j=1 α̂in

(

vĤ
k

i,j , align
(

vĤ
k

i,j

))

σk
i

, (14)

k ∈ {1, 2}, which are similarity values for out-degree and in-degree alignments.
Finally, we obtain the normalized and cumulative functions
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γout(i, σ̂1
out, σ̂

2
out) := 1 − (15)

1

σ1
i
+σ2

i

·
{

∑σ1
i

j=1 α̂out
(

vĤ
1

i,j , align
(

vĤ
1

i,j

))}

+ 1

σ1
i
+σ2

i

·
{

∑σ2
i

j=1 α̂out
(

vĤ
2

i,j , align
(

vĤ
2

i,j

))}

,

and

γin(i, σ̂1
in, σ̂2

in) := 1 − (16)

1

σ1
i
+σ2

i

·
{

∑σ1
i

j=1 α̂in
(

vĤ
1

i,j , align
(

vĤ
1

i,j

))}

+ 1

σ1
i
+σ2

i

·
{

∑σ2
i

j=1 α̂in
(

vĤ
2

i,j , align
(

vĤ
2

i,j

))}

,

which detect the similarity of an out-degree and in-degree alignment on a level
i. For the construction of the final similarity measure d with respect to our trees
we need a the definition of a special kind of similarity measures. For this, we
assume a set of units U and a mapping φ : U × U −→ [0,1]. We called φ a
backward similarity measure if it satisfies the conditions

φ(u, v) = φ(v, u), ∀u, v ∈ U

and

φ(u, u) ≥ φ(u, v), ∀u, v ∈ U.

We state now the key result that has been proven in [4] for measuring the
similarity of generalized trees.

Theorem 1. Let Ĥ1, Ĥ2 be two generalized trees, 0 ≤ i ≤ ρ, ρ := max(h1, h2).

d(Ĥ1, Ĥ2) :=
(ρ + 1)

∑ρ
i=0

γfin(i, σout
1 , σout

2 , σin
1 , σin

2 )

ρ
∏

i=0

γfin(i, σout
1 , σout

2 , σin
1 , σin

2 ),

(17)
is a backward similarity measure, where γfin is defined as

γfin = γfin(i, σout
1 , σout

2 , σin
1 , σin

2 )

:= ζ · γout + (1 − ζ) · γin, ζ ∈ [0, 1].

By construction we have d(Ĥ1, Ĥ2) ∈ [0, 1]. As a summary we note that the
GTSA measures the similarity of two generalized trees by applying the tech-
nique of sequence alignments to out-degree and in-degree sequences (on a level
i). These alignments have both global and local significance. On one hand, the
sequence alignments will be implemented in a global sense, to compute the op-
timal alignment between the sequences

SĤ1

0 , SĤ1

0 , . . . , SĤ1

h1
and SĤ2

0 , SĤ2

1 , . . . , SĤ2

h2
.
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Fig. 2. Similarity measure d1 (left) and dmin (right) as function of γfin(1) and γfin(2)
for a fixed γfin(3) = 0.5. The values of the similarity measures are color-coded as given
in the corresponding color-bars.

On the other hand, the alignments are evaluated on the levels of the generalized
trees by the function γfin. In [6] we used theorem 1 for the classification of
artificially generated data and data from microarray experiments. In this paper
we present a modified version of theorem 1 which should be more sensitive to
structural differences if applied in composition with the binary graph classifier
discussed in the next section. We define the similarity measure dmin as follows.

Corollary 1. Let Ĥ1, Ĥ2 be two generalized trees, 0 ≤ i ≤ ρ, ρ := max(h1, h2).

dmin(Ĥ1, Ĥ2):=
(ρ + 1)

∑ρ
i=0

γfin(i, σout
1 , σout

2 , σin
1 , σin

2 )
min

0≤i≤ρ
γfin(i, σout

1 , σout
2 , σin

1 , σin
2 )

(18)
The measure dmin is also a backward similarity measure, with γfin given in
theorem 1.

One can easily show, that dmin(Ĥ1, Ĥ2) ∈ [0, 1] also holds for this measure.
In figure 2 we compared the two similarity measures d (left figure) and dmin

(right figure) for the special case ρ = 2. The figures show the color-coded sim-
ilarity measure as function of γfin(1)3 and γfin(2) in the interval 0 ≤ γfin(1),
γfin(2) ≤ γfin(3) for a fixed value γfin(3) = 0.5. One characteristic difference
between both measures is that dmin equals one not only for γfin(1) = γfin(2) =
γfin(3) = 1 but also for γfin(1) = γfin(2) = γfin(3). That means it has a
kind of self-normalization if the similarities on all aligned levels are equal. One
could now argue, that this property could lead to contradictory results if used
as a similarity measure for pairs of generalized trees. This is correct, however,
we do not aim to measure the similarity of two generalized trees but the sim-
ilarity of undirected, unweighted graphs represented as set of generalized trees
as explained in detail in the following section. The crucial difference is, that in

3 Here we used a simplified notation: γfin(i) = γfin(i, σout
1 , σout

2 , σin
1 , σin

2 ) for
i ∈ {0, . . . , ρ}
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the case of generalized trees an identical similarity on all alignment levels leads
inevitably to a wrong result whereas for the classification of graphs this case will
have only neglectable effect because of three reasons. First, the decision if two
graphs belong to the same class will be given on a statistical level based on sets
of generalized trees for each graph and their mutual comparison. Additionally,
the number of cases in which all gammas are identical are rare and hence, their
effect will be small. Second, from the right figure in 2 one can see, that in the case
when all γfin(i) are similar but no longer identical, the value for dmin decreases
rapidly. Third, we will use the similarity measure for generalized trees to judge
only if two graphs belong to the same class. We make no statement about the
similarity between the graphs itself but will introduce a binary classifier.

3 Binary graph classifier

In the preceding sections we introduced a method to measure the similarity be-
tween a pair of generalized trees. In this section we extend this method to con-
struct a binary classifier for the classification of graphs. That means we construct
a method which allows us to decide if two graphs are similar or not but gives us
no information how similar they are. The graphs we deal with in the following
are unlabeled, unweighted and undirected, hence, we simply call them graphs
or networks because no special assumptions on these objects are necessary. The
basic idea of this extention is a local decomposition of a graph in generalized
trees. This decomposition and the construction of the binary classifier will now
be described in detail.

Definition 2. A graph G with N nodes can be locally decomposed in a set of
trees by the following algorithm:

Label all nodes from 1 to N . These labels form the label set LS = {1, . . . , N}.
Choose a desired depth of the trees D. Choose an arbitrary label from LS, e.g.,
i. The node with this label is the root node of a tree.

1. Calculate the shortest distance from node i to all other nodes in the graph
G, e.g., by the algorithm of Dijkstra [5].

2. The nodes with distance k are the nodes in the k’th level of the tree. Select
all nodes of the graph up to distance D, including the connections between
the nodes. Connections to nodes with distance > D are deleted.

3. Delete the label i from the label set LS.
4. Repeat this procedure if LS is not empty by choosing an arbitrary label from

LS, otherwise terminate.

This definition results in a set SG consisting of N generalized trees of depth D.
We apply to this set the GTSA introduced above and obtain a distribution of
pairwise tree similarities pTS .

A visualization for the extraction of one tree from a graph is given in figure
3. For didactical reasons, the nodes are regularly arranged on the surface of a
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Fig. 3. A spherical graph with regular node arrangement on the surface of a sphere
and regular connections between the nodes to the nearest neighbors. Shown is one local
tree, resulting from the selection of the nodes up to depth D = 2. The root node is in
the center of the two surrounding rings of nodes. (Figure was produced by Molscript
[10].)

sphere and the nodes are connected to its nearest neighbors. Shown are the nodes
which form a tree of depth D = 2. The root node is in the center of the two
node circles.

Suppose now we have two graphs G1 and G2 and we want to decide, if both
graphs are similar or not or more precise are both graphs from the same class.
As a solution to this problem we suggest not to compare the graphs itself as a
whole but to compare local parts which can be compared in an efficient way. This
decision is based on the trees similarity distributions pG1

TS and pG2

TS of G1 and G2

and the trees similarity distribution pM which results form the union of the tree
sets of the graphs, SM = SG1 ∪ SG2 . In the following we call distributions like
pM mixed and distributions like pG1

TS or pG2

TS pure similarity distribution. The
binary classifier is based on the following definition.

Definition 3. Two graphs G1 and G2 are similar, iff the three similarity dis-
tributions pG1

TS, pG2

TS and pM are similar.

The idea behind this definition is a consistency check of the mutual compatibility
of the contributing tree sets, provided the subset is sufficient large. Definition 3
maps the question of graph similarity to the similarity of distributions. There
is more then one possibility to define the similarity between two probability
distributions. Here we will use a rather restrictive then relaxed definition.

Definition 4. Two probability distributions are called similar iff the chi-square
(χ2) test for a significance level α can not reject that both distributions are equal.

The crucial presumption to apply a χ2 test is, that the number of samples is
large. In our case the sample size is given by

(

N
2

)

, with N is the number of nodes
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in the graph which corresponds also to the number of trees in the tree set of a
given graph. Hence,

(

N
2

)

is the number of different tree pairs one can form from
the tree set of a graph. For sufficiently large graphs the χ2 test will give reliable
results. For N > 150 the number of different tree pairs is already larger then
104. Due to the fact, that we intend to classify large graphs this presumption
should be fulfilled for all practical cases. Definition 3 provides now a natural way
to define a binary classifier for graphs.

Definition 5 (Binary graph classifier (BGC)). Two graphs G1 and G2

belong to the same class, iff the graphs are similar.

In the next section we apply this method to networks obtained from microar-
ray experiments for different tumor stages of cervical cancer.

4 Results

The data set we applied our method to is from DNA microarray experiments.
We used the data from [19] which investigated the gene expression levels of
different tumor stages of cervical cancer. For a summary see table 1. In general,
the higher the integer numbers and the letters of the tumor stages the more the
cancer has grown and spread. The data include also a normal expression profile
of cervical tissue indicated in table 1 as ’normal’. In the following we speak of
the network resulting e.g. form the expression profile of tumor tissue of stage
2A, as the 2A-network, G2A. Similarly, we speak of the 2A-tree set, S2A.

The networks from the expression data are obtained via a three step process
[14]:

1. Calculating the pairwise correlation coefficient for all gene profiles.
2. Prune the connections if the correlation coefficient is below a threshold ΘCo.
3. Prune the connections to a node i if its clustering coefficient is below a

threshold ΘCl.

The size of microarrays used for each experiment in [19] consisted of a to-
tal number of 10692 genes. Hence, the networks we have to compare have this
number of nodes. Via the local tree decomposition algorithm in definition 2 we
obtain tree sets for all graphs consisting of 10692 trees each. From each tree
set we choose NRS = 100000 tree pairs randomly and calculate their similar-
ity. Additionally, we calculate the distributions for mixed tree sets by choosing

Table 1. Microarray data from [19] for different tumor stages, based on the FIGO
(International Federation of Gynecologists and Obstetrics) taging system, of cervical
cancer. Each of the 27 (total number of patients) arrays contained 10692 genes.

FIGO stage Number of patients

normal 8
1B 11
2A 8
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Fig. 4. Resulting similarity distributions obtained by the measure dmin. Left: Cumula-
tive similarity distributions for the normal- (dashed line), 1B- (dotted line) and mixed-
(full line) tree set. Right: Cumulative similarity distributions for the normal- (dashed
line), 2A- (dotted line) and mixed- (full line) tree set.

randomly NRS different pairs of trees from (SGN
, SG1B

) and (SGN
, SG2A

). The
number of random samples NRS was chosen empirically. We tested several dif-
ferent sizes and found to estimate the underying one-dimensional probability
distribution pTS of the tree similarities a value of 100000 samples gives robuts
results. The cumulative similarity distributions PTS =

∫

pTS(x)dx for all com-
parisons are shown in figure 4. The mixed cumulative similarity distribution is
always shown as full line. Visual inspection of the curves in figure 4 reveals, that
the ’normal’ and 1B-networks (left figure) can be clearly distinguished while the
’normal’ and ’2A’ network (right figure) are more similar but also not equal. To
obtain a statistical answer to the question, based on definition 4, we calculated
for all distribution pairs the χ2 value. For a significance level of α = 0.01 we
had to reject the hypothesis, that two distributions are equal in all cases. Hence,
our method was able to judge, that all graphs are mutually different. Even the
comparison between normal- and 2A-networks could be classified correctly. This
demonstrates that the obtained networks from DNA microarray experiments,
representing tissues from different cancer stages of cervical cancer, can be dis-
tinguished with our BGC.

5 Conclusion

In this paper we extended our binary graph classifier (BGC), introduced in [6],
which allows the classification of large undirected, unweighted graphs. This clas-
sifier is based essentially on the generalized tree-similarity-algorithm (GTSA)
[4] which provides a similarity measure between tree pairs by an alignment of
property strings representing the trees. The application of the GTSA to undi-
rected, unweighted graphs was enabled by a local decomposition of the graph in
generalized trees resulting in a tree set on which the GTSA could be applied.
The obtained similarity values for all tree pairs of the tree set determine the sim-
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ilarity distribution of the graph. Hence, the problem of graph classification was
mapped to compare one-dimensional probability distributions. For this compari-
son we applied the well known chi-square test from statistics to the distributions.
We demonstrated by the application of our BGC, with the similarity measure
dmin for generalized trees, that the classification of co-expressed networks from
DNA microarray experiments representing tissues from different tumor stages
of cervical cancer [19], is possible. This is non-trivial because we know, in fact,
that the networks represent tissues from different tumor stages but we do not
know if the information buried in the networks is sufficient to distinguish them.
Hence, it is highly probably that essential modifications in the gene expression
regulation which are caused by the disease can be captured by DNA microar-
ray experiments and in the corresponding networks. Our approach is in contrast
to most existing studies dealing with the classification of microarray data, be-
cause we compared and classified networks, representing the relation between
co-expressed genes, instead of selecting subsets of genes as feature vectors.

In general, we think that our binary graph classifier (BGC) is a considerable
improvement to existing graph classification approaches because we presented
not only a theoretical framework suitable for small graphs but also for large
graphs of sizes which are relevant for practical applications. In the future we
will continue refining our method with special attention to networks from DNA
microarray experiments.
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