Fourth Program Visualization Workshop 23

An Integrated and “Engaging” Package for Tree Animations

Guido Réfling, Silke Schneider
Technische Universitdt Darmstadt
Darmstadt, Germany

roessling@acm.org

Abstract

This paper describes a prototypical system that combines several aspects of engage-
ment as defined in (Naps et al. 2003) for the topic of tree and tree algorithm animations.

1 Introduction

The ITiCSE 2002 Working Group on Improving the Educational Impact of Algorithm Visual-
ization proposed the following engagement taxonomy for active AV use (Naps et al. 2003):

1: No viewing — AV content is not used at all;

2: Viewing — AV is used, but the user’s involvement is centered on consuming the content
or controlling the progress (forward / pause / faster / ...);

3: Responding — the user is asked certain questions while the content is presented, usually
asking him or her to predict the next state of the animation;

4: Changing — the user can modify the visualization, usually by specifying the input data
set or selecting actions that cause an update of the visualization;

5: Constructing — the user generates a new animation of a given algorithm;

6: Presenting — the user presents a visualization to an audience for feedback and discussion.
The content of the visualization does not have to be created by the user.

The Working Group also stated two hypotheses: first, that there is no significant difference
regarding learning outcomes between the two lower levels; and second, that there will be a
significant difference in learning outcomes when comparing any other “higher” level with a
“lower” level. Thus, each step in the hierarchy (apart from the first two) is supposed to
increase the possible improvement in learning outcomes.

In this paper, we present a new Java application for animating trees and tree algorithms.
Apart from the engagement levels 1 and 2 supported by all AV tools, the application also
supports levels 3 (responding) and 4 (changing), and can be used for level 6 (presenting).

2 Visualizing and Creating Tree Animations

Figure 1 shows the welcome screen for the application. The application consists of four areas.
At the top is the control area, containing the application’s menu bar and (draggable) tool bar
for creating or modifying the current trees. The main part of the window is taken up by the
documentation and animation area, which shows the current content.

The right side contains an index of the web pages as a reference. This page is essentially
identical to the welcome page initially shown in the documentation tab of Figure 1. The Data
objects view provides access to the current instances of the two supported tree types, binary
and m-way trees. Finally, a console at the bottom of the window displays the output of the
operations.

The buttons in the toolbar can be used for performing tree operations. The first and the
last two buttons shown in Figure 1 can be used to load a new animation, and zoom in and

24 Fourth Program Visualization Workshop

out of the animation, respectively. The two groups of five buttons each are used for creating
a new tree, inserting a new key, removing a key, showing the generated animation, and saving
the animation to disk. The first set of buttons is for binary trees, while the second group is
for m-way trees, as indicated by the node form used for the icons.

File Animation Documentation Binary Tree M-way Tree
A& &0 oaa0r

Documentation] Binary Tree Animation]

AVL-Tree

?

A 'ndex | Data objects |

[»

1. Binary Troes

1. Inserting in
Einary Trees

2. Deleting from
Einary Trees

2. Search Trees

1. Inserting in
Search Trees

Definition

AVL-trees are sorted search trees, whose inner nodes all have a balance
factorof 1, Dor -1.

The AVL-tree is a good aproximation to a balanced search tree. It's much

easier to keep than a balanced search tree, still searching in an AVL-tree is 2. Deleting from
nearly equally efficient. Insertion and deleting operations in an AVL-tree | |[|¢ Search Trees
also require logarithmic complexity. Reorganisation operations merely : 3 AVL-Trees .
becormne necessary wher AVL-properties are violated. The height of an AVL- o
tree h with n elements is: i 1. Inserting in_
i AVL-Trees
hin) = 1,44 login+2) - 0,328 = E—g—\efff?regom
Ealance Factor: 3. LL-Eotation
4. LE-Fotation
. . . . 5. RR-Rotation
The balance factor of a node is calculated by taking the difference in & RL-Rotation
heights of the node s left and right subtree. e
4. Min-Heap

1. Imsertinging |«

Console

Generated Tree: [3, 1, 5,, 2, 4, 6]
Animation loaded successfulld

Figure 1: The tree visualization application with index and AVL tree documentation

The application currently supports the following types of trees:

binary trees,

e binary search trees,

e AVL trees,

e Heaps, implemented as min or maz heaps,

e and m-way search trees with the implementation of a B tree.

The trees were modeled as described in the literature, e.g. by Goodrich and Tamassia
(2005). It is easy to add new implementations, for example for red-black trees. To do so, the
implementation has to inherit from the appropriate class - for red-black trees, this is the class
tree.SearchTree. Additionally, some of the methods implemented by the super class may have
to be overridden. This usually concerns the methods for inserting or deleting keys, reordering
the tree after operations, and in some cases, for adapting how the nodes are painted.

The user is free to create a new tree type by selecting either binary or m-way trees from
the menu. He can then decide whether documentation shall be included in the display, and
whether interactive questions should be asked during execution, as described by the 2002
ITiCSE Working Group (Naps et al. 2003). The user then works with the tree using the
buttons shown in the toolbar of Figure 1 to insert or remove keys.

Fourth Program Visualization Workshop 25

The “play” button displays the current state of the tree as an animation. The animation
is generated in ANIMALSCRIPT and displayed by a customized front-end of ANIMAL. Figure
2 shows an excerpt of an AVL tree animation. In the Figure, the insertion of the key 19 will
cause a RL(i) rotation to rebalance the AVL tree. This double rotation is known to be often
poorly understood by students. Therefore, the animation incorporates a schematic display of
the state of the (sub-)tree before and after the operation, shown on the left side of Figure 2.

Even after the animation is started, the user can continue modifying the tree using the
buttons described above. The application creates add-on visualization code for the current
animation to reflect the results of the actions taken by the user. This can then be loaded in
using the “incremental loading” button shown at the bottom right of Figure 2. Instead of
parsing the complete animation, only the added code will be parsed and added to the end of
the current visualization, boosting the speed of the display.

The application described so far thus combines the generation of a tree according to
the user’s operations and the stepwise animation of the output. Therefore, this places the
application on the levels 2 (viewing) and 4 (changing) of the Working Group engagement
taxonomy (Naps et al. 2003).

RL{)-Rotation in an AVLtree

0 < B B | & ‘

Figure 2: Excerpt of the AVL animation illustrating a RL(i) double rotation

3 Embedded Documentation

RoBling and Naps (2002) stated the importance of incorporating hypertext explanations of
the visual display. This documentation is meant to describe the operation of the underlying
visualization engine, the mapping of the algorithm to the visualization, and should be “ideally
adaptive to the current state of the algorithm”.

The approach up to this stage is similar to some existing AV systems, especially Matriz-
Pro (Karavirta et al. 2004). However, some of the planned features, especially considering
embedded documentation as shown in Figure 2, are not easily implemented in these systems.
Basing the work on ANIMALSCRIPT makes generating content like this relatively easy.

Users of the application can use the built-in documentation provided in HTML format.
Figure 3 shows part of the HTML page explaining the RL(i) rotation animated in Figure
2. This HTML documentation does not refer to actual values, but provides one page for
each possible operation (insertion and removal of tree nodes and all balancing or reordering
operations).

26 Fourth Program Visualization Workshop

Additionally, the user can decide to turn on additional documentation to explain the
individual operations. The documentation is adaptive to the current state of the algorithm
and also mentions the concrete affected elements for any operation.

Documentation | Animation]

RIL.-Rotation

There are three kinds of RL-Rotations:

RL{i)-Rotation:

The difference in the three kind of rotations is the balance factor of node "C". In the first case,
this node has a balance factor of 0. The reorganization first rotates the right subtree to the
right, so "C" is the new root of this subtree. Now the problern can be treated as a RR-rotation.
S0 the whole tree is rotated to the left. Afterwards one gets a complete, balanced binary tree
which of course also fulfills AVL-tree properties.

RI{ii)-Rotation: ~|

Figure 3: Example documentation: performing a RL (i) rotation on an AVL tree

This documentation is included in the animation, to prevent the user from having to switch
views. When it appears, it is placed at the top of the animation window. The documentation
is currently available for all supported tree types except for B-Trees. It will document both
insertion and removal operations in one of four levels of detail:

NO_DOCUMENTATION turns off all documentation features within the animation;
EXPERT offers a single line of rather terse documentation;
INTERMEDIATE offers two lines of documentation for each operation;

BEGINNER offers up to four lines of documentation for each insertion or removal.

Figure 4 shows the three documentation levels (NO_DOCUMENTATION is not shown,
as it is by definition empty). The basic animation content is the documentation for beginners,
with the tree to the right. The documentation for intermediates and experts was grafted to this
Figure to allow for easy comparison. The documentation, and indeed the whole application,
is prepared for internationalization, and already addresses English and German. Adding more
languages is fairly straightforward, as it mainly requires translating the resource text files.

The combination of live tree exploration with embedded and external documentation
brings the application close to the realm of hypertextbooks described by Ross and Grinder
(2002), also addressed by an ITiCSE 2006 Working Group. It also makes it easy to use the
application to present tree algorithms to an audience, making the system applicable to level
6 (presenting) of the engagement taxonomy for its (admittedly) narrow focus.

Fourth Program Visualization Workshop 27

(Documentation for Beginners
The given tree originates from the operation insert{4). The key 4 was inserted at the fitting position b.
The search tree properties are preserved.

If the produced tree is unbalanced (.2, one node has balance factor unequal -1, 0 or 1), the tree
_needs to be rotated.

(Documentation for intermediate users insertid) 9
AVL-tree after operation insert{dh.
\The key 4 was inserted at position b.

[Documentation for expert usersj u E

AV L-tree afler operation insertid).

Figure 4: Documentation levels in the animation: beginner, intermediate, and expert

4 Interactive Prediction Support

The responding category in the engagement taxonomy expects the animation to be interrupted
by questions. These questions will typically prompt the user to predict the next step performed
by the algorithm, or ask him or her to describe the current visualization state.

For this end, we have added the avInteraction package to the application, as described by
RoBling and Héussge (2004). The functionality of this package is similar to the “interactive
prediction” supported by JHAVE (RoBling and Naps 2002). The avInteraction package can
easily be extended or adapted to other systems. Additionally, it offers other interesting fea-

tures, such as skipping questions once a specified number of “related” questions were answered
correctly.

Figure 5 shows an example pop-up window that prompts the user to predict which rotation
will occur in the next step of the AVL tree reorganization. Currently, only AVL trees and
B-trees incorporate interactive prediction, although this can be changed easily.

Multiple-Choice Question —

The resaling tree wiolates AvL properties and has 1o be rotated.
Wrthich rotation operation will now be performeds

FF.-rotation
Y5 |

FL-rotation

.
LL-Fotation
i #3

LF.~rotation
-

Submit answer

Yes, that s right.

-
-

Figure 5: Interactive Prediction: determining the correct type of rotation

28 Fourth Program Visualization Workshop

5 Summary and Further Work

In this paper, we have presented an extensive application for creating tree visualizations.
Based on the underlying ANIMAL system, generating the animation code is fairly simple.
The application merges several requirements from past Working Group reports and research
papers: both “static” and “live” documentation are included, and interactive questions can
be activated to make the learner’s session more engaging. Finally, the extensive collection of
HTML pages describing the underlying data structures and algorithms makes this a promising
learning tool for trees.

We have incorporated some new ideas into this prototype. First, this is one of the first
systems that we are aware of that uses the actual values in its built-in documentation, and
supports different levels of documentation detail. The ability to add code to the visualization
without having to re-parse from the beginning is also a new features, and definitely a premiere
for the ANIMAL system.

In the future, we want to further explore the connection between the ideas used in this
system and the hypertextbook concept (Ross and Grinder 2002). We also plan to add some
of the tried and tested features, especially the “incremental loading”, into the ANIMAL AV
system.

We are also looking for educators interested in trying out the application. We would
especially appreciate colleagues who are willing to take part in an evaluation of the system
regarding learning outcomes, as our teaching obligations currently do not include access to
the data structures course, and therefore keep us from the key clientele.

References

1 Michael Thomas Goodrich and Roberto Tamassia. Data Structures € Algorithms in Java.
Wiley & Sons, 2005.

2 Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo Stalnacke. MatrixPro - A Tool for
Ex Tempore Demonstration of Data Structures and Algorithms. In Proceedings of the Third
Program Visualization Workshop, University of Warwick, UK, pages 27-33, July 2004.

3 Thomas L. Naps, Guido Ro68ling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris
Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and J. Angel
Velazquez-Iturbide. Exploring the Role of Visualization and Engagement in Computer
Science Education. ACM SIGCSE Bulletin, 35(2):131-152, 2003.

4 Rockford J. Ross and Michael T. Grinder. Hypertextbooks: Animated, Active Learning,
Comprehensive Teaching and Learning Resources for the Web. In Stephan Diehl, editor,
Software Visualization, number 2269 in Lecture Notes in Computer Science, pages 269-284.
Springer, 2002.

5 Guido Ro8ling and Gina H&aussge. Towards Tool-Independent Interaction Support. In Pro-
ceedings of the Third Program Visualization Workshop, University of Warwick, UK, pages
99-103, July 2004.

6 Guido Roflling and Thomas L. Naps. A Testbed for Pedagogical Requirements in Algorithm
Visualizations. Proceedings of the 7" Annual ACM SIGCSE / SIGCUE Conference on In-
novation and Technology in Computer Science Education (ITiCSE 2002), Arhus, Denmark,
pages 96-100, June 2002.

