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Abstract: In this paper, we state information inequalities for nanostructures 
representing graphs by using some novel information functionals. We use a recently 
proposed approach to determine the structural information content of arbitrary 
undirected and connected graphs. In contrast to the information indices often used in 
chemical information theory, the entropy measure does not depend on the problem to 
determine vertex partitions of a graph under consideration. Finally, to define the 
entropy of a graph, we use certain information functionals. As the main result, we 
derive so‐called implicit and explicit information inequalities for arbitrary undirected 
and connected graphs. 
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1. INTRODUCTION 

So far, several classes of nanostructures representing (chemical) graphs by using 
graph‐theoretical indices which characterize structural features of the underlying 
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graphs have been frequently investigated, e.g., see (Ashrafi, Ghorbani and Jalali, 2008; 
Diudea, Stefu, Parv and John, 2004; Diudea and Nagy, 2007; Yousefi‐Azari, Ashrafi 
and Khalifeh, 2008). Generally, to characterize chemical graphs topologically, various 
topological indices have been used (Devillers and Balaban, 1999). An interesting class 
of such indices for characterizing networks are information measures (Bonchev, 1983; 
Bonchev, 1979; Emmert‐Streib and Dehmer, 2007) which are usually based on the 
well known SHANNON‐entropy (Shannon and Weaver, 1997). Mathematical 
properties of such information measures for graphs have been intensely investigated in 
(Bonchev, 1983; Bonchev, 1979; Devillers and Balaban, 1999; Solé and Valverde, 
2004). 

In this paper, we discuss the problem of deriving information inequalities for arbitrary 
undirected and connected networks. In information theory, the problem of investigating 
information inequalities has been addressed by (Zhang and Yeung, 1997; Zhang and 
Yeung, 1998). In contrast, we express some implicit and explicit information 
inequalities for graphs. The problem of finding implicit information inequalities has 
been already similarly addressed in (Dehmer, 2008; Dehmer, Borgert and 
Emmert‐Streib, 2008). To derive the corresponding graph entropy measures by using 
some novel information functionals, we use an approach that has been recently 
discussed in (Dehmer, 2008). As the main contribution of this paper, we obtain some 
implicit and explicit information inequalities for graphs based on the defined 
information functionals. 

It is important to mention that in this paper, we will not interpret the derived entropy 
measures explicitly based on sets of chemical graphs. We already investigated the 
meaning of some these graph entropy measures (based on the information functional 

 and similar ones) in (Dehmer and Emmert‐Streib, 2008; Dehmer, Varmuza, 
Borgert and Emmert‐Streib, 2009). Especially by using the information functional 

, we found that a similarly defined graph entropy measure (see (Dehmer, 
Varmuza, Borgert and Emmert‐Streib, 2009)) characterizes the diversity of the atoms 
in terms of neighborhoods, and thereby captures a special type of structural complexity 
and inner symmetry (Dehmer, Varmuza, Borgert and Emmert‐Streib, 2009). Of 
course, such insights could be obtained by considering the information functionals we 
will define in the present paper. However, this will not be the point of this paper. As 
mentioned above, we focus on deriving information inequalities based on the novel 
information functionals we will introduce. 
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2. INFORMATION MEASURES IN CHEMICAL INFORMATION THEORY 

In the following, we give a short review of such information measures for graphs which 
have been intensely used in chemical information theory. The rich variety of molecular 
structures contributed to the considerable efforts to introduce information measures of 
graphs (Bonchev, 1983; Bonchev, Mekenyan and Trinajstić, 1981; Bonchev and 
Trinajstić, 1982; Bonchev, 1995; Bonchev, 2003; Bonchev and Buck, 2005). The 
Shannon equations can be more generally treated for characterizing the distribution of 
any graph invariant  according to a certain equivalency criterion : 

  (1) 

  (2) 

The first invariant studied was the number of graph vertices, while the equivalence 
criterion , which produces the vertex set partitioning into  subsets of cardinality , 
included vertex coloring (elemental composition of molecule), vertex degree denoted by 

 (Harary, 1969), extended (second, third, etc.) vertex degree (Basak, 1987) and its 
combining with the elementary composition (the RASHESVSKY approach (Rashevsky, 
1955)), orbits of the vertex automorphisms group of the graph (Trucco, 1956), vertex 
total distance (Bonchev and Trinajstić, 1977), and vertex ordering with respect to the 
graph center (Bonchev, Balaban and Mekenyan, 1980). Later, RASHESVSKY’s 
approach has been more rigorously treated as an extension of the finite probability 
scheme by MOWSHOWITZ (Mowshowitz, 1968), and applied to other important graph 
invariant decompositions. 

One of the latest graph complexity measures is based on the distribution of the vertex 
degree to distance ratios,  (Bonchev and Buck, 2005), an information 
functional, which integrates two of the criteria for a complex graph ‐ high connectivity 
and small radius. The possibility for using the number of graph edges  as a basis for 
additional information functionals has been first mentioned by TRUCCO (Trucco, 
1956), who proposed to use the graph edges partitioning into the orbits of the edge 
automorphisms group of the graph. 
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A more sophisticated information measure has been developed recently within the 
framework of the overall topological indices concept (Bonchev, 2005). It calculates the 
overall value  of a certain graph invariant  by summing up its values in all 
subgraphs, and partitioning them into terms of increasing orders. Many concrete 
measures can be found in (Bonchev, 2005). The properties of most of the here 
mentioned information functionals are not studied in detail, and will be a subject of our 
future research. 

3. INFORMATION FUNCTIONALS 

In this section, we define some novel information functionals for graphs. Starting from 
these functionals, we obtain families of entropic measures. In this paper, we restrict our 
analysis to undirected and connected graphs without loops and multiple edges. Before 
starting with the definitions, we first express the required graph‐theoretical 
preliminaries (Harary, 1969; Skorobogatov and Dobrynin, 1988). Let  be the set of 
finite, undirected and connected graphs .  denotes the complete graph 
with  vertices. The degree of a vertex  is denoted by  and equals the 
number of edges  which are incident with . The quantity 

 is called the eccentricity of .  denotes the 
shortest distance between  and .  and 

 is called the diameter and the radius of , respectively. 
Further, we define 
  (3) 

 is called ‐sphere of  regarding . In the following, we use the definition of 
the so‐called local information graph  of  that has been originally 
defined in (Dehmer, 2008). This definition is used to define information functionals we 
want to use in this paper. For a vertex , we set  
and determine the induced shortest paths: 
  (4) 
  (5) 
   
  (6) 

The corresponding edge sets are defined by 
  (7) 
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            (8) 

   

              (9) 

If we now set 
 

and , we define the local information graph  of 
 regarding  by 

  (10) 

We remark that the local information graph regarding  can not always be 
uniquely defined because there often exists more than one path from  to a certain 
vertex in the corresponding ‐sphere (Dehmer, 2008). 

Definition 3.1 Let . We define the information functional  
by 
  (11) 

where the  are real positive coefficients. 

Definition 3.2 Let . We define the information functional  
by 
  (12) 

Definition 3.3 Let . We define the information functional  
by  

  (13) 
where the  are real positive coefficients.  denotes 
the number of edges of . 

Definition 3.4 Let . For each vertex , we define the 
vertex probabilities as follows 
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  (14) 

  (15) 

and 

  (16) 

Definition 3.5 We finally define the corresponding entropic measures by 

  (17) 

  (18) 

and 

  (19) 

A simple observation for finding graphs which maximize these entropic measures 
represents the following statement. 

Theorem 3.1 The complete graph  maximizes  by using the information 
functionals , and . 

Proof: We start the information functional . For each vertex  of , it 
holds  and . Hence, 
we yield 

  (20) 
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Therefore,  attains maximum entropy. For  and , the proof 
can be done analogously.  

4. INFORMATION INEQUALITIES 

In this section, we prove some information inequalities for graphs. In this paper, we 
divide the obtained information inequalities into the following two categories: 

1. Implicit information inequalities: The entropy of a graph  is 
characterized by another graph entropy expression based on an 
inequality 
(Example: ). 

2. Explicit information inequalities: The entropy of a graph  will be 
estimated by a constant expression (Example: ) 

4.1. IMPLICIT INFORMATION INEQUALITIES 

We start this section with expressing an assertion to obtain certain information 
inequalities for graphs. This assertion has been already expressed in (Dehmer, 2008) for 
deriving relationships between the resulting graph entropies by using different 
parameterized information functionals (Dehmer, 2008). 

Lemma 4.1 Let . Further, let  and  be two arbitrary information 
functionals. If the relation 
  (21) 

holds, then we obtain 
  (22) 

Either,  depends from the information functionals or is a constant expression. 

By using this lemma, we are now able to state implicit information inequalities 
according to the defined information functionals. 
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Theorem 4.1 Let . Let  and  be the information functionals expressed 
by Definition (3.1) and Definition (3.2), respectively. First, the inequality 

  (23) 

is valid, where . Second, it holds 

  

                          (24) 

Proof: For deriving a relation between  and , we first observe that 

  (25) 

holds. To see this inequality, we always find 

      (26) 

Hence, Inequality (25) holds. If we now assume that at least two consecutive 
coefficients are not equal, we further obtain 

  (27) 

From this, we yield 

  (28) 
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By setting  and applying Lemma (4.1), we now infer  

Inequality (24). Hence, the theorem is proven. 

Theorem 4.2 Let . It holds 

   (29) 

where . 

Proof: We start with Inequality (23). By estimating the fraction of this inequality, we 
yield 

   (30) 

because it holds 

  (31) 

and 

 (32) 

Now, by applying Lemma (4.1), we infer Inequality (29). 

Theorem 4.3 Let . Further, we define 
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First, the inequality 

  (33) 

is valid, where  and . Second, it 

holds 

  (34) 

Proof: Starting from the definition of the information functional , we get the 
estimation 

  (35) 

From this, we yield 

(36) 

Once again, by now applying Lemma (4.1), one finalizes the proof of Theorem (4.3). 

Theorem 4.4 Let . It holds 

  (37) 

where . 

Proof: We see that 

  (38) 
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holds, because we obtain 

  (39) 

and 

  (40) 

Now, the application of Lemma (4.1) to Inequality (38) completes the proof. 

To finalize this section, we also want to express an implicit information inequality by 
incorporating  and . 

Theorem 4.5 Let . If it holds , then we yield 

(41) 

Proof: We do give a sketch of this proof only. The main step is to find a relation 
between  and . Now, we infer that it generally holds 
 

 (42) 

Starting from Inequality (42) and taking  into account, we further get 

  (43) 

By now applying Lemma (4.1) to Inequality (43), the proof can be completed. 

Remark 4.1 We want to remark that many other implicit information inequalities can 
be proven. In summary, the shown method mainly depends on (i) finding certain 
relationships between the information functionals which capture structural information 
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of a graph (e.g., see Theorem (4.1)) or (ii) finding estimations for the used information 
functionals (e.g., see Theorem (4.3)). 

4.2. EXPLICIT INFORMATION INEQUALITIES 

As a first attempt, we state some explicit information inequalities based on the 
information functionals we have expressed in Section(3). 

Theorem 4.6 Let . We define 
     (44) 

                          (45)  

Then, the following inequalities are valid: 

(46) 

(47) 

and 

(48) 

Proof: To prove Inequality (46), we find 

(49) 
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Further, we yield 

  (50) 

and 

  (51) 

Now, we finally infer 

(52) 

But this inequality equals Inequality (46). Inequality (47) and Inequality (48) can be 
proven analogously. 

The following theorem can be similarly proven than Theorem (4.6). 

Theorem 4.7 Let . We define  and 
. Then, the following inequalities are valid: 

  (53) 

  (54) 

and 

  (55) 

5. SUMMARY AND CONCLUSION  

In this paper, we investigated the problem of deriving information inequalities for 
graphs. For doing so, we used the construction of the graph entropy measure which has 
been published in (Dehmer, 2008). Here, we distinguished so called implicit and 
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explicit information inequalities (see Section 4). For example, the proven inequalities 
may serve for characterizing graphs, e.g., see (Dehmer, Borgert and Emmert‐Streib, 
2008). For deriving implicit inequalities, either one has to infer a relation between the 
used information functionals under consideration or one must find an estimation for an 
information functional that quantifies structural information of a graph. In contrast, 
explicit information inequalities represent estimates for the entropies of graphs (e.g., 
representing lower or upper bounds). 

As future work, we want to define further information functionals to characterize certain 
graph classes by using entropy measures. In particular, we would like to infer 
information inequalities for classical entropy measures used in chemical graph theory 
by investigating the corresponding information functional in depth. Such relations are 
almost unexplored so far. Further, we want to work towards the challenging problem of 
interpreting the derived information inequalities for given sets of  anostructures 
representing chemical graphs. Another point of interest is to interpret the introduced 
information measures (based on the defined information functionals) with respect to 
given sets of nanostructures. 
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