
Fifth Program Visualization Workshop 95

Animalipse - An Eclipse Plugin for AnimalScript

Guido Rößling, Peter Schroeder
CS Department, TU Darmstadt

Hochschulstr. 10
64289 Darmstadt, Germany

roessling@acm.org

Abstract

AnimalScript, while highly expressive and versatile, is not easy to edit with no
editor support. We have developed an Eclipse plugin for editing AnimalScript that
includes a text editor, outline, and code assist. We expect that this plugin will make the
editing process much easier and faster. The paper presents both technical aspects of the
development and the resulting plugin.

1 Introduction

Animal is a versatile system for creating, modifying and presenting algorithm animations
and visualizations (AV content). As far as we know, it is currently the only AV system that
allows users to create AV content using all of the following approaches:

• visually using drag and drop in a novice-friendly graphical user interface (Rößling and
Freisleben, 2002),

• textually using the highly expressive AnimalScript language (Rößling and Freisleben,
2001; Rößling et al., 2004),

• employing a new Java-based generation API,

• using a set of external applications for generating context-specific animations for trees
(Rößling and Schneider, 2006) and graphs / graph algorithms (Naps et al., 2003; Rößling
et al., 2007),

• as well as using one of the currently more than 130 animation generators of the built-in
generator framework (Rößling and Ackermann, 2006). Here, it is important to note
that the number of generators does not necessarily indicate the number of algorithms
covered, but more the different “flavors” for a given algorithm, such as the choice of the
programming language and the output language used for the presentation.

All generation approaches except for the first are directly or indirectly based on using
AnimalScript, which is in the process of taking over the role of the preferred representation
of Animal AV content from the built-in ASCII notation. The reasons for this development are
the human-readable notation of AnimalScript, the ease with which it can be generated from
programs and edited manually, and the expressiveness of the language. Since 2008, Animal
also includes a window that provides a BNF-based definition of the AnimalScript notation,
as well as (since 2006) a small text editor for directly entering or modifying AnimalScript
input and visualizing the results.

AnimalScript files contain one command per line, such as a definition of a new graphical
object or a transformation of some objects. The animation is organized in steps, each of
which can contain one or more commands. If multiple commands are used in a step, the step
is surrounded by curly braces { }. Please see (Rößling et al., 2004; Rößling and Freisleben,
2001) for more information about AnimalScript.

Many of the other established AV systems also cover some of the generation approaches
listed above. For example, JAWAA (Akingbade et al., 2003) and the GAIGS and JSamba

96 Fifth Program Visualization Workshop

(Stasko, 1998) visualization engines used by JHAVÉ (Naps and Rößling, 2006) also use a
scripting language. JAWAA also offers a visual editor in its current release. JHAVÉ offers
a set of content generators that are similar to the approaches offered in Animal’s gener-
ator framework and can be run off the web. However, they focus on specifying algorithm
parameters, and thus do not allow the definition of visual properties such as colors.

While AnimalScript can be edited easily using Animal’s built-in editor or any arbitrary
text editor, the comfort offered by this is somewhat lacking. The internal editor only offers
rudimentary editing features; cut, copy and paste features are only supported by using the
underlying operating system support. The editor does not offer a search facility, display of
line numbers, indication of recognized syntactical or semantical errors, or syntax highlighting.
Thus, editing a longer AnimalScript file is awkward and can become frustrating if the system
indicates a parsing problem “in line 117”. Despite (usually) precise information about the
nature of the error, the lack of line numbers, search or “go to line” functions makes locating
and fixing the error a tedious and less than enjoyable process.

We decided that his unsatisfying state needed addressing. Essentially, we saw three differ-
ent approaches to provide better user support: improve the built-in editor to be comparable
in comfort to the user’s preferred text editor, create a new custom editor for AnimalScript
content, or provide AnimalScript bindings for at least one commonly used text editor. It
did not seem useful to invest much effort only to improve the built-in editor so that it would be
comparable to, but still different from, a given user’s preferred text editor. The same applied
to creating a new custom editor. Therefore, we opted to provide AnimalScript bindings for
at least one commonly used text editor. We now had to decide which text editor to use.

The main target audience for Animal and thus for AnimalScript are students and
teachers of Computer Science. We decided to base our work on the text editor provided by
the Eclipse IDE, as this IDE is used in many Computer Science courses, so that our target
users may already be familiar with the basic features of the underlying text editor.

The remainder of the paper is structured as follows. In Section 2, we will briefly summarize
the features offered by the Eclipse IDE, focusing on plugins and text editors. Section 3 outlines
the plugin for editing AnimalScript code using the Eclipse IDE features. Section 4 shows
usage examples to illustrate the support for AnimalScript provided by the Animalipse
plugin. Finally, Section 5 evaluates the plugin and presents areas for further research.

2 A Brief Overview of the Eclipse IDE

Eclipse (Beck and Gamma, 2003) was presented by IBM in 2001 and turned into open source in
2004. Due to a large number of developers, the platform offers a huge selection of plugins and
extensions for different needs, including a large selection of supported programming languages,
version control system front-ends for CVS and Subversion, workflow and design components.
Probably the best known plugin is the Java Development Tools, employed by many students,
researchers, developers, and teachers world-wide for writing Java-based programs.

The main components of the Eclipse platform are the workbench responsible for the graph-
ical user interface, including the maintenance of the Eclipse windows, and the workspace. The
workspace is a separate file system that handles the creation, storage and editing of files,
including files, directories and projects.

The graphical front-end of Eclipse contains the usual menus and dialogs as well as editors
and views. Editors are used to modify resources - the most well-known is the Java Editor for
editing Java class source. Views are responsible for presenting content. Eclipse already offers
many different views such as the Problems, Progress or Console view.

Eclipse plugins are Java programs that are loaded by the Eclipse runtime environment
and added to the platform. They are connected to Eclipse using “extension points” provided
by Eclipse, which describe different aspects of the Eclipse platform that can be extended by a
given plugin (Beck and Gamma, 2003). The definition of the extension points used is stated

Fifth Program Visualization Workshop 97

in a XML-based “plugin manifest” that has to be provided together with each plugin.
One of the strengths of the Eclipse editors is the integration of helpful features. This

includes syntax highlighting (using either color or font changes, or a combination), the ability
to directly jump to a given line in the editor, and marking (recognized) issues. The marking
facilities called “annotations” in Eclipse can include a mark in the left or right margin of the
text editor next to the affected line. An x-shaped cross in a red circle mark in the left margin
is used to indicate syntactical (or other) errors, together with a red mark in the scroll bar
to the right. Additionally, the annotated text is indicated, often by a wavy red line, and an
appropriate description is placed in the Problems view.

The Outline view provides a table of contents-like view of the editor contents. For a Java
class, this view lists all methods and import statements; clicking on a line directly positions
the text editor on the associated content line. Longer components in the text editor may also
be folded to reduce visual clutter and make it easier to focus on the current area of work.

Finally, Eclipse editors can also support the user by content assist, often also called code
assist or code completion. This feature lets the user choose from a pop-up list of constructs or
completions possible at the current text caret position. It can be used both for the insertion
of a single keyword or complete structure, such as an if..else.. statement, and for the choice
of a given method to be invoked, including the required invocation parameters. This type
of support is only possible if the plugin is aware of the syntax of the underlying language or
the set of classes and their methods, respectively. Both aspects of content assist can be very
helpful and save time, especially for users who are new to the target language.

3 Animalipse: An Eclipse Plugin for AnimalScript

The Animalipse plugin was expected to provide the following functionality:

• support the creation and editing of AnimalScript as an Eclipse plugin;

• allow easy installation using the Eclipse plugin installation support;

• provide cut, copy and paste functionality, as well as undo and redo;

• allow the display of line numbers, animation step folding (showing only one line for a
set of commands in the same animation step), automatic indentation of code lines, and
syntax highlighting;

• locate and mark errors in the AnimalScript file;

• display a useful overview in the Eclipse Outline view;

• and finally provide content assist for the AnimalScript command notation.

An AnimalScript file edited in the plugin shall also be directly runnable from the plugin,
so that the user does not have to start the required Animal system externally.

The Animalipse plugin is based on an Eclipse text editor and thus directly inherits some
of the requested functionality, such as the support for cut, copy and paste, as well as the easy
installation typical for Eclipse plugins.

3.1 Parsing AnimalScript Content

Some of the features listed above, especially for marking errors, syntax highlighting and
content assist, require that the editor “understands” what is being edited. As the editor may
also need to request the same piece of information multiple times, we decided to implement
a document object model (DOM) for AnimalScript (AS-DOM) to allow for faster and
more expressive access to information about the currently selected element or current editing

98 Fifth Program Visualization Workshop

position. The essential structure of the AnimalScript-DOM consists of a root element,
metadata about the AnimalScript contents, and a set of animation steps. The steps are
placed in ascending order, just as they would be for the animation. Each step can contain
one or multiple animation commands.

The creation of a AnimalScript-DOM requires parsing the UTF-8 encoded Animal-
Script contents from the text editor. By registering as an observer in the IDocument provided
by the Eclipse editor classes, the parser can be informed automatically about changes in the
code, and thus update its DOM. However, each key press triggers an update event, which
would force the system to parse the complete script (again). Therefore, we decided to enforce
a waiting interval of at least 2.5 seconds between two parsing iterations to prevent unnecessary
continuous parsing of the editor contents. Of course, this interval can be adjusted by the end-
user.

Animalipse does not directly use abstract syntax trees to support the parsing process,
but parses elements on a line base. This is possible as AnimalScript mandates that each
command will occupy exactly one line (and that each input line will contain exactly one
command, if one ignores comments or the curly braces used to indicate steps). A command
consists of a sequence of language elements separated by an arbitrary amount of whitespace.
Each element can for example be numeric, a literal, or a keyword. The internal representation
of the parsed elements is similar to an abstract syntax tree, called ASAST for Animal-
Script-Abstract Syntax Tree. The definition of the tree is created when the plugin is started
by parsing a BNF-like definition file, which makes a later adaptation of the AnimalScript
language easy.

3.2 Content Assist

The content assist feature of Animalipse uses the content assist components provided by the
Eclipse editors. Based on the internal representation of the script and the current position,
the plugin creates a list of recommendations for content that could be used to complete
the current selection. Compared to many other languages (including Java), this process is
difficult for AnimalScript content: the notation used by AnimalScript contains many
optional keywords or elements, making the number of possible completions at any given point
comparatively high. After the list is populated, it is presented to the user, who is then
prompted to choose one of the elements.

Similarly, locating syntax errors in a given AnimalScript input file is also difficult due
to the profusion of optional elements. In this case, the large number of branches possible
at (almost) any given point in the parsing process leads to a number of “wrong errors”: a
command line is only syntactically incorrect if it does not match any of the possible syntactical
rules. Or, to put it differently, if there is a way to parse a given line without a syntax error,
the line is syntactically correct, and all parse errors when trying a different combination of
optional elements have to be ignored. Additionally, the parser has to be able to detect when
there is “too much” input in the current line: the command has been completely parsed, but
contains additional elements that thus do not belong to the text.

Several nodes in the AnimalScript abstract syntax tree can be annotated with context
information, as shown in Listing 1. The context definition provides additional details about the
context of a given leaf in the AnimalScript abstract syntax tree. Line 1 shows the unique
identifier of the regarded context element (tupleOfTwoNaturalNumbers), used for defining
absolute coordinates. The preceding dollar sign indicates that this is the element to be
defined. Each definition line starts with the “at” character @ and can provide the following
information:

@info elements provide a user-readable text that describes the element.

@display provides a user-readable rendition of the terminal output in the editor. This is for

Fifth Program Visualization Workshop 99

example necessary to indicate the position(s) of whitespace.

@cursorhint specifies how many character the cursor has to be shifted to the left after
inserting the definition shown in @display into the editor. In this example, choosing the
element will lead to the inclusion of the text (X , Y) including all spaces. The value
7 for the cursorhint places the cursor seven positions to the left of its position after the
insertion, and thus places it on the first coordinate inside the parentheses.

1 $tupleOfTwoNaturalNumbers
2 @info=A tuple of two natural numbers
3 @display=(X , Y)
4 @cursorhint=7

Listing 1: Context Definition Example

The combination of the presented features made the implementation of the parsing and
content assist components of the Animalipse plugin far more difficult than we originally
anticipated. However, we managed to overcome all obstacles and now have a full-fledged
Eclipse plugin for AnimalScript.

3.3 Integration into Eclipse

The integration of the Animalipse plugin into Eclipse uses five different Eclipse extension
points, as outlined in Table 1.

Plugin component Eclipse Extension Point
AnimalScript editor org.eclipse.ui.editors
Error marking org.eclipse.core.resources.markers
Starting the animation org.eclipse.debug.ui.launchShortcuts
New Animation Creation Wizard org.eclipse.ui.newWizards
Plugin Preferences org.eclipse.ui.preferencesPage

Table 1: Eclipse Extension Points used for the Animalipse plugin

The AnimalScript editor is based on the org.eclipse.ui.IEditorPart interface and extends
the Eclipse TextEditor class. It handles AnimalScript files with the extension .asu. This
editor is automatically started whenever the user opens or creates a file with this extension.

Other components of the plugin, such as code folding or the creation of the overview,
similarly implement provided interfaces and extend existing Eclipse classes.

3.4 Installing the Plugin

To install the plugin, the user selects the Help → Software Updates → Find and Install. . .
menu entry. After selecting “new features to install”, a new remote site has to be created with
the address http://www.algoanim.info/Animal/download/Animalipse/ and confirmed by
OK. After finishing the settings, a list of updates should appear and include Animalipse.
After confirming all subsequent dialogs, the plugin will be installed and can be used after a
restart of Eclipse.

4 Example Features of the Animalipse Eclipse Plugin

New AnimalScript files can be generated inside Animalipse by using the built-in creation
wizard. The user first uses the File menu, toolbar or menu entry to create a new file of type
AnimalScript. In the following dialog, the title of the animation, its width and height and

100 Fifth Program Visualization Workshop

Figure 1: The Animalipse text editor with syntax highlighting

the animation author and title can be specified. This information is then used to create the
appropriate AnimalScript header and open the resulting file in the AnimalScript editor.

Figure 1 shows an example of the Animalipse text editor. Keywords used to define
graphical objects are highlighted in green, operation keywords are shown in orange. All other
keywords are shown in purple. Literal values, such as object names and Strings, are shown
in blue. Color definitions are placed before a background of the chosen color. The original
text is colored in a complementary color to be readable. Font definitions (not included in the
example) are placed in italics. Finally, comments - introduced by the hash mark # - are shown
in dark green. All color settings can be adjusted in the Animalipse plugin preferences.

Figure 2: Indication of a syntax error by the Animalipse plugin

Figure 2 shows a view of a small code snippet with a syntax error (the keyword “filled”
is missing, as can be seen by comparing the two code lines). The syntax analysis has to
be triggered manually by selecting the Search for errors. . . entry in the context menu of
the editor. The incorrectly placed keyword fillColor is shown with a wavy red underline.
Additionally, the marker in the left margin and the line marker in the scrollbar to the right
indicate the error, while the filled red square at the top right shows the presence of (at least)
one error. Additionally, but not shown in Figure 2, a short error description appears in the
Eclipse Problems view.

The outline of the rather simple animation shown in Figure 1 is shown in Figure 3. Each
step can be folded or unfolded to show more details. If multiple operations take place in the
same animation step, they are shown on separate lines. Clicking on an entry positions the
cursor on the appropriate line in the text editor.

Content assist is provided whenever the user requests it explicitly by pressing the CTRL
key together with the space key. Additionally, Animalipse offers content assist if a space
character is entered. A small window pops up and offers the list of legal completions at this
point, allowing the user to choose one or close the window and continue manually.

Finally, AnimalScript content can be run directly by choosing the context menu entry
Run → Load in Animal. This requires that the user has first told the plugin where the
Animal jar file can be found by going to Window → Preferences. . ., selecting the plugin from
the list, and entering or browsing for the location of the Animal jar.

Fifth Program Visualization Workshop 101

Figure 3: The Animalipse outline, showing the structure of the animation

5 Summary and Future Work

In this paper, we have presented the Animalipse Eclipse plugin for creating, editing and
debugging AnimalScript-based AV content. The plugin is very easy to integrate into an
existing Eclipse installation and behaves similarly to other established plugins, such as the
Java Development Tools plugin for Eclipse. Users should therefore find it easy to use the
plugin to become more proficient with AnimalScript.

The abstract syntax tree model used for the AnimalScript language allows extending the
language’s definition by modifying the BNF-based notation without touching the plugin code.
However, a certain measure of caution has to be exerted when editing the file, to prevent the
introduction of parsing errors. At the same time, the underlying notation could be exchanged
by another language, such as JAWAA (Akingbade et al., 2003), by editing the notation file
accordingly.

The other features described in this paper, such as syntax highlighting, searching for
errors, and content assist, should also prove helpful. There are some minor issues with some
of these components, which are due to the underlying language notation. For example, the
choice lists for code assist can become very long, if the user requests assistance near the start
of a command. This is due to the large number of optional keywords and components used
throughout AnimalScript. While this makes programming in AnimalScript comfortable
(“specify what you need and skip the rest”), it also leads to a large number of possible correct
completions.

The error detection is not fully accurate; found errors will lead to parsing errors in Animal,
but not all errors during loading in the animation in Animal may be detected by the plugin.
For example, the user may request a certain transformation subtype, such as moving the
nodes 3 and 4, on a structure that does not support this operation, for example a square.
Syntactically, this command is correct, but it will lead to a semantic error when the execution
is attempted. Therefore, the plugin cannot detect this type of error unless it were more tightly
interwoven with Animal’s internal parsing process - which would slow down the processing
of files.

102 Fifth Program Visualization Workshop

Other issues that shall be addressed in the future include highlighting the use of the
currently selected identifier or showing context information about elements as a tool tip.
Automatic formating of AnimalScript files, similarly to the feature offered by the Java
editor, would also be helpful. Finally, it would be interesting to remodel Animal’s content
generators as Eclipse wizards or create an internal Animal view. However, these aspects
require another full-time student working on them as a Bachelor Thesis.

If you are interested in trying out Animalipse, please follow the steps described in Section
3.4. Constructive feedback is appreciated! We would also like to cooperate with others who
wish to implement Eclipse plugins for “their” AV notation.

References

Ayonike Akingbade, Thomas Finley, Diana Jackson, Pretesh Patel, and Susan H. Rodger.
JAWAA: Easy Web-Based Animation from CS 0 to Advanced CS Courses. In Proceedings
of the 34th ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
2003), Reno, Nevada, pages 162–166. ACM Press, New York, 2003.

Kent Beck and Erich Gamma. Contributing to Eclipse. Principles, Patterns, and Plugins.
Addison-Wesley Longman, 2003. ISBN 978-0321205759.

Thomas L. Naps and Guido Rößling. JHAVÉ - more Visualizers (and Visualizations) Needed.
In Guido Rößling, editor, Proceedings of the Fourth Program Visualization Workshop, Flo-
rence, Italy, pages 112–117, June 2006.

Thomas L. Naps, Jeff Lucas, and Guido Rößling. VisualGraph - A Graph Class Designed for
Both Undergraduate Students and Educators. In Proceedings of the 34th ACM SIGCSE
Technical Symposium on Computer Science Education (SIGCSE 2003), Reno, Nevada,
pages 167–171. ACM Press, New York, 2003.

Guido Rößling and Tobias Ackermann. A Framework for Generating AV Content on-the-
fly. In Guido Rößling, editor, Proceedings of the Fourth Program Visualization Workshop,
Florence, Italy, pages 106–111, June 2006.

Guido Rößling and Bernd Freisleben. AnimalScript: An Extensible Scripting Language
for Algorithm Animation. Proceedings of the 32nd ACM SIGCSE Technical Symposium
on Computer Science Education (SIGCSE 2001), Charlotte, North Carolina, pages 70–74,
February 2001.

Guido Rößling and Bernd Freisleben. Animal: A System for Supporting Multiple Roles in
Algorithm Animation. Journal of Visual Languages and Computing, 13(2):341–354, 2002.

Guido Rößling and Silke Schneider. An Integrated and “Engaging” Package for Tree Anima-
tions. In Guido Rößling, editor, Proceedings of the Fourth Program Visualization Workshop,
Florence, Italy, pages 23–28, June 2006.

Guido Rößling, Felix Gliesche, Thomas Jajeh, and Thomas Widjaja. Enhanced Expressiveness
in Scripting Using AnimalScript V2. In Proceedings of the Third Program Visualization
Workshop, University of Warwick, UK, pages 15–19, July 2004.

Guido Rößling, Silke Schneider, and Simon Kulessa. Easy, Fast, and Flexible Algorithm
Animation Generation. In Proceedings of the 13th ACM SIGCSE/SIGCUE International
Conference on Innovation and Technology in Computer Science Education (ITiCSE 2007),
Dundee, Scotland, page 357. ACM Press, New York, NY, USA, 2007.

John Stasko. Building Software Visualizations through Direct Manipulation and Demon-
stration. In John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, editors,
Software Visualization, chapter 14, pages 187–203. MIT Press, 1998.

