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Abstract
Measurement of pianists’ arm movement provides a signal,
which is composed of controlled movements and noise. The
noise is composed of uncontrolled movement generated by
the interaction of the arm with the piano action and mea-
surement error. We propose a probabilistic model for arm
touch movements, which allows to estimate the amount of
noise in a joint. This estimation helps to interpret the move-
ment signal, which is of interest for augmented piano and
piano pedagogy applications.
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1. Introduction
Sensor signals of piano playing movements can be used to
provide an additional channel of control over live electron-
ics. One approach is to use the sensor signal as a direct input
for an electronic effect. A certain amount of uncontrollabil-
ity, which may eventually be accepted as musically interest-
ing, is present in such a set-up. Our approach is to automat-
ically analyze the movement signal to distinguish between
controlled and uncontrolled movements. Controlled move-
ments can the be used to drive the effect.

Movement signals are useful for piano pedagogy applica-
tions. Sonification and visualization can be used to increase
awareness and knowledge of playing movements. This can
have positive effects on the student’s technique and confi-
dence through increased feeling of control. A pedagogy
system has to ignore movement measurements that are not
controllable by the player to be effective.

A basic question for the analysis of touch movements is
to determine if the player has used controlled movement in
a given joint to execute a touch. One might think that this
question can be easily answered by examining the move-
ment signal. However, the signal is often not pure enough
as the following example may illustrate: Assume that a pi-
anist executes a touch with the right arm using movement
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from the elbow joint exclusively. Before the touch move-
ment begins, the thumb, which will press the key, is located,
say, 1cm above the key. The player uses controlled move-
ment in the elbow joint to move the thumb towards the key.
When the thumb comes in touch with the key, the right fore-
arm starts to passively rotate clockwise. The forearm ro-
tation signal indicates movement although the user has not
used controlled forearm rotation movement. This effect oc-
curs before the hammer strikes the string, i.e., during touch
execution.

We propose a probabilistic model of arm movement,
which allows to estimate the amount of uncontrolled move-
ment in a joint. A function that estimates mean and standard
deviation of the uncontrolled movement in a joint is learned
from a large data-set of touch movement samples. The
amount of uncontrolled movement in a joint is estimated as
a function of the measured movements in the other joints. In
the above example, the mean and variance of uncontrolled
forearm rotation movement changes when the player uses
elbow movement.

The probabilistic model can be used in the following way
to determine if the player has used controlled movement in
a given joint to execute a touch:

1. The movement in all arm joints is measured.

2. The mean and standard deviation of the uncontrolled
movement in a joint is estimated through the learned
function, which receives the measured movement in
all other joints as input.

3. If the measured movement exceeds the mean sig-
nificantly, taking the estimated standard deviation
into account, the touch was executed with controlled
movement in the examined joint.

The remaining paper is structured as follows. In sec-
tion 2 related work is discussed. The proposed method is
discussed in sections 3 to 6. In section 7 we describe how to
apply the model for inertial sensors. An evaluation is pre-
sented in section 8. Conclusions and future work conclude
the paper (section 9).

2. Related work
Recognition methods for movements of instrumentalists
have been previously proposed, especially for stringed in-
struments. Peiper et al. use an electromagnetic motion track-



ing system to capture violin playing movements [6]. Fea-
tures are extracted from the data and are used for classifica-
tion based on decision trees. The system visualizes feature
and classification data. Rasamimanana et al. use an inertial
measurement sensor to capture violin playing movements
[7]. Features are extracted from the data and used for classi-
fication based on k-nearest-neighbor. Young uses an inertial
sensor to capture violin playing movements [8]. The pro-
posed classification method is a combination of principal
component analysis and k-nearest-neighbor.

Contrary to methods that we have previously attempted
[3, 5], which classify touch movements based on thresh-
olding of features, the boundaries that are defined with the
probabilistic model have a physical meaning. Also our pre-
vious examinations were limited to specific arm movements,
namely movements in the elbow joint [3], and forearm rota-
tion [5]. This paper examines movements in all arm joints
excluding movements originating in the shoulder girdle.

3. Feature computation
The human arm has mainly seven degrees of freedom: (1)
wrist abduction-adduction, (2) wrist extension-flexion, (3)
elbow extension-flexion, (4) elbow pronation-supination,
(5) shoulder abduction-adduction, (6) shoulder extension-
flexion, and (7) shoulder rotation.

The piano performance is segmented at note-onsets. At
each note-onset seven features (F1, F2, ..., F7) are computed
for the seven degrees of freedom of the arm. Each fea-
ture should be proportional to the amount of movement in
the corresponding joint. Additionally we use the feature
(Fv), which is proportional to the velocity of the pressed
key. Therefore, at each note onset the following vector d,
which will be called sample henceforth, is computed:

d = (F1, F2, F3, F4, F5, F6, F7, Fv) (1)

4. Model of arm movement
The feature Fi measures the movement Mi in the i-th joint.
However, because of inaccuracies of the measurement, Fi is
composed of movement Mi and measurement error Ei:

Fi = Mi + Ei (2)

The measurement error is typically determined by physical
effects to a great extent and only to a lesser extent by actual
hardware accuracy limitations. It is, e.g., often not feasible
to firmly fixate a sensor to the back of the hand so that the
sensor exhibits some degree of independent movement.

An important distinction in our model is the distinction
between controlled and uncontrolled movement. Controlled
movement is intentional movement of the player. Uncon-
trolled movement is movement that is not under direct con-
trol of the player but is instead the result of mechanical inter-
action with the piano action and biomechanical constraints
of the arm (see section 1).

The movement Mi is composed of controlled movement
MCi and uncontrolled movement MUi. Therefore, the fea-
ture Fi is given as:

Fi = MCi +MUi + Ei (3)

We model MUi + Ei as normally distributed with some
mean µi and standard deviation σi.

MUi + Ei ∼ N (µi, σi) (4)

The mean µi and the standard deviation σi of the uncon-
trolled movement and measurement error of the i-th joint
MUi + Ei is a function of the controlled movement in the
other joints MCj with j 6= i and the key velocity Fv .

(µi, σi) = fi(MC1, ...,MCi−1,MCi+1, ...,MC7, Fv) (5)

It is necessary to include the key velocity Fv , which pro-
vides information about finger movement intensity, because
finger movement intensity has an influence on uncontrolled
arm joint movements and is not measured by the features F1

to F7.

5. Touch analysis
Assume that the function fi that expresses the relationship
of the controlled movement in the other joints MCj with
i 6= j to the mean µi and standard deviation σi of the un-
controlled movement in the i-th joint is given.

When a note is played, the feature vector (F1, F2, ..., F7,
Fv) is computed. To evaluate fi it is necessary to estimate
the controlled movements MCj with j 6= i. By setting
the uncontrolled movements and measurement errors of the
other joints MUj + Ej to zero, we can estimate MCj with
the feature Fj and evaluate the function fi. 1

(µi, σi) = fi(MC1, ...,MCi−1,MCi+1, ...,MC7, Fv) (6)
≈ fi(F1, ..., Fi−1, Fi+1, ..., F7, Fv) (7)

=: fi(d) (8)

6. Learning f
To learn the function fi, which estimates mean µi and stan-
dard deviation σi of the uncontrolled movement in the i-th
joint, it is necessary to obtain a data-set of movement sam-
ples without controlled movement in the i-th joint. This is
accomplished by recording movements of touches where the
joint i is intentionally not used by the player. E.g., to esti-
mate the function f2, which estimates mean µ2 and standard
deviation σ2 of the wrist extension-flexion joint, we have to
collect movement samples of touches without involvement
of wrist extension or flexion.

Let D be our data-set for learning fi as described above.
D is composed of the samples d1, d2, ..., dN , which contain

1 We introduce fi(d) for notational convenience, d is the sample d =
(F1, ..., F7, Fv).



the computed features as defined in section 3. We denote the
i-th component of a sample dn as dn(i). We learn fi using
maximum likelihood estimation. The likelihood of the data-
set D given fi is:

p(D|fi) =
N∏

n=1

p(dn|fi(dn)) =
N∏

n=1

N (dn(i)|fi(dn)) (9)

To allow numerical optimization of the likelihood, fi has
to be given in some parametric form (e.g., fi could be a lin-
ear function of the features so that the parameters would be
the linear coefficients). A maximum likelihood estimation
of fi is found by maximizing equation 9 over the param-
eters of fi. This maximization is conducted by a numeri-
cal optimization algorithm. (To avoid underflow problems
ln(p(D|fi)) is maximized instead.)

7. Applying the model to inertial sensing
We applied the probabilistic model to inertial sensing, us-
ing MotionNet, our custom-built inertial measurement sys-
tem. MotionNet is composed of several inertial sensor units
that provide gyroscope and accelerometer signals at a rate of
100Hz. A detailed description of our sensing hardware can
be found in [4]. The sensor units are worn on the player’s
upper arm, forearm, and back of the hand.

7.1. Feature computation
The feature computation is based on the gyroscope signals.
To calculate the angular rate in a joint, the gyroscope signals
of the two connected limbs are used. The features F1 to F7

are then computed by taking the mean value of the angular
rate in the corresponding joint over 0.08 seconds.

To compute feature F3 (elbow extension-flexion), the ori-
entation of the sensor on the forearm and the wrist relative
to gravity has to be determined. This is done by calculating
pitch and roll angles using Kalman filtering to combine gy-
roscope and accelerometer signals. To compute the features
of the shoulder joint (F5, F6, and F7), the gyroscope signals
of the upper arm are directly used since there is no sensors
attached to the upper body.

7.2. Key velocity estimation
We used a Kawai K–15 ATX acoustical upright piano with
MIDI interface. To estimate the mapping from MIDI ve-
locity to the velocity of the key, we attached a MotionNet
sensor unit to the back of the hand of a player. Then the
player executed touches from the wrist with different loud-
ness. The maximal angular rate was determined for each
touch. This angular rate is proportional to the velocity of the
key. An exponential function of the form g(x) = axb + c
was fitted to the recorded data using the least mean squares
algorithm (see figure 1). The input x is the MIDI velocity
provided by the piano and the output y is the maximal an-
gular rate. By evaluating the learned mapping g for a given
MIDI velocity, the feature Fv can be computed as the value
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Figure 1. MIDI velocity vs. angular rate.

estimated by the function g(x), which is proportional to the
velocity of the key.

7.3. Collecting data
The elementary possibilities to execute a touch with the
support of the arm are: to move the hand from the wrist
(wrist-touch), to move the forearm in the elbow joint
(elbow-touch), to rotate the forearm towards the thumb
(pronation-touch), to rotate the forearm toward the little fin-
ger (supination-touch), and to move the whole arm in the
shoulder joint (shoulder-touch).

Our data-set is composed of approximately 18.000
touches, which were executed by one pianist. The record-
ings were conducted in several sessions. Each session con-
tains approximately 100 touches. Several parameters were
identified which have an effect on uncontrolled movements
in the pianist’s arm joints.

The type of touch has an effect on the uncontrolled
movements; e.g., an elbow-touch introduces more uncon-
trolled movement in the upper arm than a finger-touch.
Therefore we recorded different types of touches: finger-
touches, wrist-touches, elbow-touches, pronation-touches,
supination-touches, and shoulder-touches.

The loudness of a played note has an effect on the un-
controlled movements because of mechanical interaction of
the finger with piano action (especially the keybed). There-
fore, we recorded the touches in three loudness bands: pi-
anissimo to mezzo-piano, mezzo-piano to mezzo-forte, and
mezzo-forte to fortissimo.

The initial height above the key plays a role for the un-
controlled movements, as bigger movements induce more
uncontrolled movements in the other joints. Therefore, we
recorded direct touches where the execution starts either
with the finger on the key and indirect touches where the
execution starts with the finger about 1–2 cm above the key.

Which finger executes the touch plays a role for the un-



controlled movements. E.g., if an elbow-touch is executed
with the thumb, a supination of the forearm occurs be-
cause of the interaction of the arm with the piano action.
If an elbow-touch is executed with the middle finger, un-
controlled supination is not typical. Therefore, we recorded
touches for each finger.

The recorded touches are grouped into the data-sets D0

to D7. The data-set Di contains all touches with controlled
movement in joint i. For example D2 contains touches with
controlled wrist extension-flexion movement, i.e., D2 con-
tains all wrist-touches. Similarly D3 contains all elbow-
touches, D4 contains all pronation- and supination-touches,
and D6 contains all shoulder-touches. Additionally D0 is
the data-set that consists of all finger-touches. For the joints
i = 1, 5, 7 no recordings with controlled movement in these
particular joints were made so that D1 = D5 = D7 = ∅.

The collected data samples originate from a single pi-
anist. Because of differences in anatomy and movement
habits, it is optimal to train the estimation functions with
data from the specific user of the system only. While such
a tailored system is applicable in certain scenarios, e.g., if
a pianist records movement samples for her individual aug-
mented piano system, it is also desirable to have an univer-
sal estimation function. Therefore, it would be interesting to
examine the uncontrolled movements of different pianists in
the future.

7.4. Learning f
Many possibilities exist to define the function fi. We chose
to discuss the two functions defined in table 1. Variant 1, the
minimalist model, uses solely key velocity. Variant 2, the
full model, uses measured movement and key velocity and
is motivated below. Variant 1 serves mainly for comparison
with variant 2.

To estimate the parameters αi, βi, etc., equation 9 is max-
imized. The data-set that is used to compute the parameters
of fi is the union of the data-sets Dj with j 6= i, which are
composed of all touches with controlled movement in the
j-th joint (see section 7.3). To assure that fi is always valid,
the standard deviation has to be always greater than zero.
This is assured by formulating these constraints and using
a constraint nonlinear optimization algorithm to maximize
the following equation 9 with respect to the constraints.

Variant 1 expresses mean and standard deviation as lin-
ear function of the feature Fv . The feature Fv measures the
amount of overall movement. The mean is modeled to be
linear in the amount of overall movement. The mean is mod-
eled without an intercept term, because it is expected that
uncontrolled movement in a joint is very low when overall
movement is very low. To assure that the estimated standard
deviation is valid, i.e., greater than zero, for all possible ve-
locities Fv , equation 9 is maximized under the constraints
βi ≥ 0 and γi > 0 with a constraint nonlinear optimization
algorithm.

Table 1. Variants for mean and standard deviation estimation.

Variant
1 µi = αiFv

σi = βiFv + γi

2 µi = αiF
−
2 + βiF

−
3 + γiF

p
4 + δiF

s
4 +

εiF
−
6 + ζiFv

σi = ηiF
−
2 + θiF

−
3 + ιi|F4|+ κiFv + λi

Variant 2 expresses mean and standard deviation as func-
tion of measured movement and key velocity. The move-
ments that produce the greatest amount of uncontrolled
movements, are movements that can effect a movement of
the key. This is because of the interaction with the piano ac-
tion, which is not present in non-touch-movements like the
abduction and adduction of the wrist. Therefore, function 2
expresses the mean and the standard deviation as function
of the joint movements that are used for touch movements:
wrist flexion F−2 , elbow extension F−3 , forearm pronation
F p

4 , forearm supination F s
4 , and shoulder extension F−6 .

(The superscript “-” denotes downward movement towards
the key.) By definition F−2 , F−3 , F p

4 , F s
4 , and F−6 are always

greater or equal to zero. The mean is computed as a linear
combination of these features and key velocity, which pro-
vides additional information about finger movement. An in-
tercept is not included in the calculation of the mean because
the mean of the uncontrolled movement can be expected to
be close to zero when there is little overall movement. For
the computation of the mean, the forearm rotation feature
F4 is split into F p

4 and F s
4 because the effects of the forearm

rotation cannot be modeled as linear in F4. E.g., when the
player executes pronation- or supination-touches, the fore-
arm is lifted by the force of the rotation when the finger hits
the keybed. However, this cannot be expressed by a function
linear in the forearm rotation movement F4.

The standard deviation is expressed as a linear function
of wrist flexion F−2 , elbow extension F−3 , the absolute value
of forearm rotation F4, and shoulder extension F6−. To
compute the standard deviation it is not necessary to split
the forearm rotation into pronation and supination because
the standard deviation should be similar for similar amounts
of pronation or supination.

A constraint nonlinear optimization algorithm is used to
find the parameters by maximizing equation 9 under the
constraints ηi ≥ 0, θi ≥ 0, ιi ≥ 0, κi ≥ 0, and λi > 0.

8. Evaluation
In this section we want to discuss (1) how well the esti-
mated means and standard deviations fit the observed data,
(2) if the inclusion of movement measurement provides an
advantage over estimation based on key velocity only, and
(3) how well the model performs when used for classifica-
tion of touch-types.



8.1. Estimation quality
In figure 2 measurements of uncontrolled forearm rotation
movement are plotted. The solid lines in figure 2 show the
estimated mean (middle line) and standard deviation (outer
lines). One can visually convince oneself that the estimated
mean and standard deviation are sensible.

In figure 2 all touch types in our data-set are simulta-
neously plotted. Variant 1 has no information of the arm
movement so that it estimates the amount of uncontrolled
movement from the key velocity Fv only. It would be favor-
able, if the estimation of the mean and standard deviation
of the uncontrolled movement would adapt to the different
conditions of the touch types. That this is in fact accom-
plished by variant 2 will be shown by examination of the
figures 3 and 4.

In figures 3 and 4 the x-axis corresponds to the feature
Fv and the y-axis corresponds to the feature F6, which mea-
sures extension-flexion of the arm in the shoulder joint. Be-
cause Fv is computed from a discrete MIDI velocity sig-
nal, it is possible to split the data into sets of samples with
the same value Fv . Each of these sets corresponds to one
vertical slice of the graph. For each vertical slice, the aver-
age mean and the average standard deviation is computed by
evaluating variant 2 of fi for each sample. The intuition is
that, given that we examine only one type of touch alone, the
amount of movement from the joint that executes the touch
is proportional to key velocity.

The average mean and the mean ± the standard varia-
tion of a slice are marked with thicker dots. By examining
the data points and the plotted estimations one can convince
oneself that the estimated mean and standard deviation are
sensible. Furthermore, variant 2 is adaptive to the type of
touch performed, so that it outperforms variant 1, which can
only find a global estimation over all touch types. Consider
that variant 2 had no direct information about the performed
touch but was able to find good estimates of the mean and
standard deviation by evaluating the variant 2 of fi. Note
that the mean of uncontrolled shoulder shoulder extension-
flexion movement increases (see figure 4). The controlled
movement of the forearm in the elbow, generates an uncon-
trolled movement that moves the upper arm upwards.

Similar plots can be obtained for other joints and other
touch-types.

8.2. Classification
The probabilistic model can be used for classification by ap-
plying thresholding on the deviation of a measurement from
the mean of estimated uncontrolled movement in a joint.
If a measurement Fi is more than some constant times the
standard deviation away from the estimated mean of uncon-
trolled movement, then the touch is classified to be a touch
with movement in the i-th joint. A touch can be simultane-
ously assigned to several touch-types, if the measured move-
ment exceeds the expected uncontrolled movement in sev-

Figure 2. Mean and standard deviation estimation (variant 1).

Figure 3. Estimation for finger-touches (variant 2).

Figure 4. Estimation for elbow-touches (variant 2).



Table 2. Confusion matrix (indications in %).
Class Wr. Elb. Pro. Sup. Sho.

Actual
Finger 3.07 3.55 0.11 0.02 0.02
Wrist 91.78 3.05 0.16 0.03 0.45
Elbow 5.91 90.18 0.09 0.00 0.35
Pronation 0.33 1.33 99.91 0.00 0.00
Supination 0.57 4.51 0.00 99.50 0.57
Shoulder 0.73 3.92 0.26 0.06 94.54

eral joints, which is the case if the pianist executes a touch
with controlled movement of more than one joint.

Some types of touch movements exceed the expected
amount of uncontrolled movement in the involved joint by
a large amount. This is the case for pronation-touches,
supination-touches, and to some extent for shoulder-
touches. For these separable movements, the classification
boundary is given by µ ± 4σ. The controlled movement in
wrist- and elbow-touches do not exceed the expected uncon-
trolled movement by as large amounts. Therefore a classifi-
cation boundary of µ±2σ is used for classification of wrist-
and elbow-touches.

The results of the classification are shown in table 2.
Pronation- and supination-touches are recognized with ac-
curacies above 99 percent. Furthermore, other touches are
not confused with pronation- or supination-touches.

Other touches are only seldom confused with shoulder-
touches. The recognition rate of 94% ensures that a great
amount of shoulder touch movements is recognized so that
only minute shoulder touch movements are not recognized
based on the presented method.

The recognition rate of wrist- and elbow-touches are
around 90% so that touches with small amount of elbow
or wrist movement are not recognized. Because it is nec-
essary to choose a narrower boundary for classification, in
this case µ±2σ, other touches are sometimes wrongly clas-
sified as wrist- or elbow-touches. An analysis shows that the
wrist and elbow movement is in fact not perfectly separable
on the given features. E.g., there is a considerable overlap
of wrist flexion when comparing finger-touches with wrist-
touches with identical key velocities, so that ideal results are
not achievable with the given features. Eventually, a differ-
ent sensor technology or a improved features could provide
measurements of wrist and elbow movement with less noise
and allow a better classification accuracy.

9. Conclusions and future work
The probabilistic model of arm touch movements allows to
estimate the amount of uncontrolled movement and mea-
surement error in a given joint. The mean and standard de-
viation of the uncontrolled movement in a joint is calculated
as a function of the measured movements in the other joints
and the key velocity. This function is learned through max-
imum likelihood estimation from a large data-set of touch

movement samples. By applying the probabilistic model to
inertial sensing, we were able to show that the model can be
successfully used to estimate mean and standard deviations
of joint movements. A classification of touch-types based
on the estimated amount of touch movements provides very
good results for pronation- and supination-touches, good re-
sults for shoulder-touches, and reasonable results for wrist-
and elbow-touches, which indeed cannot be perfectly sepa-
rated on the given features.

One advantage of using the probabilistic model for clas-
sification is that the classification boundary has a physical
meaning: The method determines that a touch has con-
trolled movement in the i-th joint if the measured move-
ment exceeds the estimated uncontrolled movement, i.e., if
|Fi − µi| > a · σi. It is therefore possible to weigh the
avoidance of false positive classifications with the response
to minute movements by changing the constant a. A sec-
ond advantage of the proposed classification method is that
a touch can be classified several touch types, which occurs
when the player uses controlled movement in several joints
to execute a touch.

The proposed model is not specific to inertial sensing.
The use of a different sensor technology, e.g., high-accuracy
visual or magnetic tracking could help to increase accuracy.
This applies also to a more complete sensor setup where
finger movements are also measured.

To build an augmented piano application based on our
analysis method, it is necessary to assign played notes to
hands. This could be achieved using Computer Vision to
track hand movement, e.g., [2].
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