
1

Symbolic Abstraction of System Requirements
Joachim Steinmetz, Olaf Maibaum, Andreas Gerndt

Software for Space Systems and Interactive Visualization
Simulation and Software Technology, DLR

Lilienthalplatz 7, D-38108, Braunschweig, Germany

Stephan Borgert, Prof. Max Mühlhäuser
Telecooperation Group, Technische Universität Darmstadt

Hochschulstraße 10, D-64289, Darmstadt, Germany

Abstract—Because aerospace systems become more and
more complex, the pile of documents specifying the require-
ments for such systems grows continuously. It is obvious
that it is not enough just to produce more documents. The
expressiveness of system requirements has to be considered
as well. However, the ambiguity of natural language gen-
erally used to define requirements impedes a manageable
growth of system complexities. Therefore, new approaches
of abstraction and formalization are needed.

In this paper, we describe a semi-automatic implementa-
tion of symbolic abstraction by using methods of natural
language processing and temporal logic. A graphical presen-
tation of grammatical relations supports the comprehensi-
bility of symbolic abstraction whereas methods defined by
the Linear Temporal Logic (LTL) are incorporated to specify
the temporal order of requirements. We demonstrate our
approach by using exemplary requirements for the ExoMars
mission.

Index Terms—Requirements Engineering, Temporal Logic,
Natural Language Processing, Model Based System Engineer-
ing

I. INTRODUCTION

Engineering of complex systems is divided into dif-
ferent phases. The first phase consists of requirements
engineering. It is driven by a huge set of specifica-
tion documents, which are usually written in a natu-
ral language. Model-Based Systems Engineering (MBSE)
allows the management of system development by in-
troducing more abstraction techniques. For requirement
specifications, abstraction schemes using symbols are
recommended. The three main reasons to implement
requirements using abstractions based on symbols are:

• Management of Requirements: Tons of documents
full of system requirements are not manageable
efficiently. However, if the semantics of the require-
ments could be expressed in a more declarative and
abstract manner, computational algorithms would
move the process of managing requirements of sys-
tems to a new level.

• Ambiguity of Natural Language: A general prob-
lem of natural languages is the ambiguous of almost
all words of its vocabulary. Also sequences of words
combined with grammatical rules are generally not
precise. Especially in technical environments, the

interpretation of the requirements can change over
time and are of different meaning between involved
engineering domains. For instance, the engineering
process of some space systems lasts more than a
decade. Therefore, a precise logic of requirements is
a prerequisite of successful missions.

• Early Verification: Currently, the verification and
validation (V&V) process is the most time con-
suming and cost intensive factor in systems engi-
neering [1]. Introducing the verification process in
early (and cheaper) phases of systems engineering
would speedup the engineering process of consis-
tent systems considerably. This could be achieved
by symbolic requirement abstraction, which helps
to identify invariant specifications of the system.
Requirements can then be evaluated by formal stat-
ically verification methods.
Eventually, this leads to a formal logic which can be
used to verify the system design model already in
early phases of the system design (cf. Figure 1).

Figure 1. Early verification can reduce
system development time and costs.

The symbolic logic eases the operability of require-
ments, avoids ambiguity of requirements, and enables
early verifications. The transformation process we pro-



2

pose starts with a grammatical analysis, continues with
a graphical representation, and eventually produces a
logic structure of system requirements. The following
sections illustrate the different phases of parsing, inter-
pretation, and generation in order to receive a symbolic
abstraction. In the next section, we start with a descrip-
tion of early phases of systems engineering. It is followed
by an introduction into the diversity of requirement engi-
neering, complemented by a section about grammatical
analysis. Thereafter, the way to represent the symbolic
abstraction and its grammatical relations as a graph is
depicted. Finally, logical expressions are used to define
the temporal logic. All descriptions are illustrated by
the application on example requirements of the ExoMars
project. The last section concludes the main issues and
points out future work.

II. EARLY PHASES OF SYSTEMS ENGINEERING

Symbolic abstraction aims at the phase of requirement
engineering where a huge set of system specifications
expressed in natural language are produced. The spec-
ification process typically starts with the user who is
suppose to use the system eventually in the future. She
or he sketches a first system behavior as use cases. Then
together with a system analyst, first requirements are
noted. In several subsequent discussions, a huge set of
requirements is generated.

This requirement phase is supplemented by the de-
velopment of scenarios [2]. While a scenario describes
a desired situation of the system operating in its en-
vironment from a functional point of view, the specifi-
cation of system requirements summarizes the different
capabilities and constraints of the system and the engi-
neering process. Once defined, the requirements are the
guidelines for all the work performed in the successive
systems engineering phases. Nevertheless, the system
developer is usually not the one who has written up
the requirements. Instead of a technical definition and
syntax of the system, they are more some kind of human
natural expressions for the system implementation.

First designs of the technical system are made in the
design phase, which starts directly after the phase of
requirement engineering. The two phases have different
intentions and goals. The requirements engineering pro-
cess try to define invariants of the system. The system
has to be complying with these invariants. Otherwise, it
would breach the mission goals as defined by the first
steps of user surveys. The system design phase yields
a first technical sketch for implementing the system. It
comes from technical system experts and not from the
user who will eventually employ the system. Moreover,
the design of a system is a dynamic and always amend-
able representation of the intended system which there-
fore results in permanent design modifications while
engineering the system.

Although they have different intentions and goals, in
real projects usually no strict boundaries between these

phases exists. This is also reflected in systems engineer-
ing tools which typically do not distinct between the
phases of requirements engineering and system design.
One of the primary tools vendors is IBM offering a
complete software suite called Rational software for
design and development [3]. It contains the requirements
tool DOORS and the system design tool Rhapsody. A
gateway interface allows requirement interchange be-
tween both tools. But it turned out that the combined
use does not cover completely the first two engineering
phases with bidirectional transformations from require-
ment phase to system design and backward. However,
IBM’s tools additionally support a way of deriving test
cases from use cases to enable an early execution of a
testing.

To keep the original intention in mind, the approach
we prefer still distinguishes between requirement engi-
neering and system design. On the one hand, we have
capabilities and constraints of the desired system and
engineering process. They have been fixed by the user
with the help of system analysts. These invariants de-
scribe the constant edges of the system and engineering
process. On the other hand, we have the evolving system
representations and implemented system elements. This
system design and development object is changed over
the engineering phases. At the end it will be the desired
system which complies with the system requirements.

On a higher logical level, MBSE can be used to define
and describe the representation of the system as mod-
els. Based on these defined system models, the system
can directly be developed. The model-based engineering
process supports a new methodology of designing and
developing complex systems. It influences the way how
to carry out the system design phase. But also the docu-
ment centric requirement engineering phase is affected.
In order to implement a seamless MBSE process, the
requirement definition processes have to be adapted
accordingly or new methods have to be developed
to transform requirements after they are defined. Our
proposed approach of symbolic requirement abstraction
follows the second way. The engineers can still define
requirements on the basis of their long term experiences
without changing common work procedures and pat-
terns. Furthermore, our approach can also be applied
on already specified mission requirement documents.
And vice versa, mission requirements specified with the
newly proposed approaches can still be processed by
older tool chains. This also helps companies, which have
already large system engineering environments and a
huge amount of system documentations, to overcome
the misery to build more complex systems which are
still manageable. With our approach, they can still use
their old tools enhanced by MBSE methodology.

III. SYMBOLIC ABSTRACTION

To implement the desired symbolic abstraction, we
need a chain of processing steps to get from natural lan-
guage expressions to logical expressions. The following



3

sub-sections examine each single step in this pipeline.
First, the requirements as source are classified in more
detail. Then the grammar analysis follows. The resulting
hierarchical tree contains grammatical relations which
are used for the next transformation step to create a
graphical representation. The final step takes the struc-
ture of the graph and transforms it into logical formulas.

A. System Requirements

Requirements engineering is just one aspect of systems
engineering applied in an early phase of an engineering
project. In some cases, the process of requirement en-
gineering is limited to software systems. Our approach,
however, is not restricted to this special variant of sys-
tems engineering but rather our example and further
work is focused on a special functional type of system
requirements.

The term requirement comes with many different
meanings. This section gives an overview about
the diversity of requirements as used in systems
engineering. Well known are different kinds of
functional and non-functional requirements and the
opposite intentions of user requirements and system
requirements [4]. It is task of the system engineer to
ensure the proper translation of the one into the other.
In general, one can additionally distinguish between
two categories of requirements. The first requirement
category contains requirements which directly specify
the resulting product.

Product Requirements:

1) Input/output requirements

2) Structural requirements

3) Functional requirements

4) Temporal requirements

5) Operational requirements

6) Technology requirements

7) Environmental requirements

(7.1) User requirements

8) Conformance requirements

The second requirement category consists of
requirements which specify the engineering process up
from the design to the final product.

Engineering Requirements:

1) Design requirements

2) Integration requirements

3) Development requirements

4) Verification requirements

(4.1) Analysis requirements

(4.2) Test requirements

(4.3) Review requirements

(4.4) Inspection requirements

5) Validation requirements

To evaluate the formalization process from natural
language requirements to abstract formulas, the follow-
ing two requirements derived from the European Space
Agency (ESA) space missions ExoMars [5] are used:

1) “The IMUs shall be calibrated for accuracy prior to
EDL.”

2) “The DMC Data Handling shall transfer to the
Rover Module Data Handling the telemetry ac-
quired during the EDL phase, prior to Rover Mod-
ule egress.”

These are product requirements which specify tempo-
ral order of functional behavior of the system.

B. Grammatical Analysis
Our approach of symbolic abstraction is based on

requirements which are expressed in natural language.
Our main focus is to handle a flat structure of text
without any structure and document references which
are commonly used in requirements tools. Operating on
top of plain text of natural language, we are independent
on the selection of a requirements tool. In this case, any
requirement tool can be used to specify requirements as
long as the tool can export the requirements in plain text.
But the most efficient way is to integrate our techniques
into existing requirement tools in order to additionally
make use of their functionalities like document referenc-
ing and tracing.

For implementation of our approach, we used an un-
lexicalized parser for probabilistic contex-free grammars
(PCFG). We did not choose a lexicalized parser because
they need a lot of memory for processing long sentences.
And as long as English is the used language, which
is the case in several system requirements documents,
the unlexicalized component parser provides near the
same accurate results as a lexicalized dependency parser.
For our study, the unlexicalized parser fitted perfectly.
For sentences in German, a lexicalized parser is recom-
mended [6].

For the context-free grammar, we have chosen a gram-
mar which was generated by trainings on the New
York newsletter “Wall Street Journal”. This probabilistic,
context-free grammar is widely used and expressed in
Penn Treebank (PTB) [7] [8] notation. The grammar is
provided as a serialized and compressed Java binary
for loading the parser and can be used to parse English
sentences. Moreover this grammar is free to use and can
be extended. Besides the Java binary library, a textual
version of the grammar is also available and can be



4

compiled to the Java binary using standard Java tools.
In the case of the necessity to incorporate a special tech-
nical vocabulary, e.g. to support particular engineering
disciplines, we have therefore the ability to add new
grammar rules or to train the grammar on this special
technical corpus in order to improve the parser accuracy.

In the state the parser is loaded by using the given
context-free grammar, the parser is able to work on
the corpus. In our case we can process every English
sentence that is recognizable by the given context-free
grammar. If requirement documentations in a different
language have to be processed, it is possible just to
change the grammar. For instance for Chinese docu-
ments, one can switch over from the Penn English
Treebank to the Penn/Colorado Chinese Treebank [9].

In those cases, also special character sets are sup-
ported. Both mentioned Treebanks and other commonly
used Corpora are hosted and published by the Linguistic
Data Consortium (LDC) [10].

In our current approach, only English sentences
derived from requirements documents are processed.
While parsing a sentence, different algorithms are ex-
ecuted. First of all, the parser processes each word of
a sentence and creates a hierarchical tree whose nodes
are annotated with Part-of-Speech (POS) tags [11] which
are calculated by applying a maximum entropy model.
The most common tags are noun phases (NP) an verb
phases (VP). In figure 2, the yielded tree with POS tags
is depicted after applying the parser on the first example
requirement.

Figure 2. Hierarchical tree with POS tags after
parsing the first example requirement.

Based on this tree, further grammatical analyses are
applied. For analyzing the grammatical dependencies
within the sentence, a hierarchically structured set of
defined grammatical relations is used. Such a grammat-

ical relation describes the relation between two nodes
of the parser tree and therefore defines a grammatical
dependency between two words within a sentence. The
first node of this relation is called governor and the
second node is called dependent. Intuitively the root of
the hierarchical tree of grammatical relations is also
named dependent. Therefore, each relation is a dependent
relation if it can not be specified more precisely within
the hierarchy of grammatical relations.

A grammatical relation which is a leaf within the
hierarchical tree of all grammatical relations is defined
by source pattern and target pattern. The source pat-
tern is expressed by regular expressions, implemented
in Java. The source pattern limits the search space to
a possible set of nodes which are able to fulfill the
grammatical relation. The target pattern uses Treebank
Regular Expressions (Tregex) [12] to describe the local
relations between first node and second node. The ex-
pression depends on the Treebank and its definition. In
the case a grammatical relation is applied on a sentence,
an exhaustive depth first search is executed on the parse
tree. With the support of providing parent pointers in
the tree structure, this bottleneck would be eliminated.
As long as no indexed search on pre-indexed trees
is available, it takes some time to check patterns of
grammatical relations within the sentence. Phasing an
English sentence yields a set of grammatical relations
within the sentence which provides a basis for further
symbolic abstraction.

C. Graphical Representation

The next step from natural language to formulas is
the transformation of the grammatical relations into a
graphical presentation. One suitable way to depict gram-
matical relations is to use non-cyclic, directed graphs.
Graphiz [13] is an appropriate tool to visualize such
graphs. It requires a special textual input format and
generates appropriate diagrams. One sentence of the
requirements results in one graph.

Figure 3. Graphical representation of the first
example systems requirement.

A node of the graph represents one word of the
sentence and an edge denotes the grammatical relation
between them.



5

Figure 4. Graphical representation of the second example systems requirement.

An arrow starts at the governor and ends at the de-
pendent. Labels specify the grammatical relations at the
edges. At the nodes, they name the word, the index of
the word in the sentence, and the POS tag. Special shapes
of the nodes additionally emphasize basic grammatical
elements of a sentence. A node that represents a noun
is depicted as a blue rectangle. A verb in contrast is
highlighted as a green octagon.

The graphical presentation of the first example system
requirement is given in figure 3.

The graph represents the grammatical relations and
the POS tags in an expressive way. The feature of
highlighting helps to identify the core meaning of a
requirement.

Figure 4 demonstrates how the graph looks like for
the second example of the ExoMars requirement.

D. Logical Expression
The final step of the symbolic abstraction process is

to formalize the structure of the graph by using logical
formula. The proposed approach is a semi-automatic
process. In order to adapt the quality of results, it permits
the user to control the transformation from the struc-
tured graphical representation into logical formula. As
abstraction language, the Linear Temporal Logic (LTL)
[14] is used.

It provides the needed possibility to specify temporal
order of system functions.

Besides propositional variables and the usual logic
operators ∨,∧,¬,⇒, the following temporal modal op-
erators are available:

♦ some time in the future
� always in the future
W always in the future unless
U always in the future until
◦ in the next state
� some time in the past
� always in the past
B always in the past back to
S always in the past since
• in the previous state

With this set of operators, it is possible to formalize the
system requirements.

For the second ExoMars requirement, the temporal
order of system functions is as follow: At first, the IMU
(Inertial Measurement Unit) shall be calibrated [cal()].
Then the telemetry will be acquired [acq()] during the
EDL (Entry, Decent, Landing) phase. Finally, this teleme-
try data have to be transferred [tran()] before the Rover
module is permitted [per()] to discover the Mars. After
the system functions are identified, the requirement can
be expressed as formulas by means of the LTL.



6

For the two example requirements, the following for-
mal descriptions are eventually obtained:

Requirement 1:
acq() ⇒ �cal()

Requirement 2:

�¬acq() ∨♦[acq() ∧ ¬per()U[tran() ∨�¬per()]]

IV. CONCLUSION

Technical requirements usually consist of many tech-
nical words and are written in an unstructured, human
readable way. Often, many essential aspects are hidden
and the temporal order can not be identified right away.
The automatically generated graphical representation
provides a first step to analyze the fundamental meaning
of the requirement. The manual process from such a
graph to a temporal logic formalizes the system require-
ments and eliminates inherent ambiguities.

The symbolic abstraction yields linear time logic for-
mulas which are not as intuitive as the original require-
ments. However, it is not the goal to offer an alternative
to the error-prone way to define requirements which
can directly be used by the requirement engineers. In
fact, the motivation of symbolic abstraction of system
requirements is the possibility to enable early verification
and further computational V&V algorithms. By the way,
at least the intermediate step which automatically creates
a graphical representation can be exploited for a more
reliable but also intuitive approach for the analysis of
system requirements.

REFERENCES

[1] A. Engel, Verification, Validation and Testing of Engineered Systems
(Wiley Series in Systems Engineering and Management). John Wiley
& Sons, 2010.

[2] J. Whittle and I. H. Krüger, A methodology for scenario-based
requirements capture, Proceedings, ICSE 2004 Workshop on Scenarios
and State Machines (SCESM), 2004.

[3] [Online]. Available: http://www.ibm.com/software/rational/
[4] A. van Lamsweerde, Requirements Engineering: From System Goals

to UML Models to Software Specifications. John Wiley & Sons, 2009.
[5] [Online]. Available: http://www.esa.int/esaMI/ExoMars/
[6] A. N. Rafferty and C. D. Manning, Parsing three german tree-

banks: lexicalized and unlexicalized baselines, Proceedings, Work-
shop on Parsing German (PaGe08), pp. 40–46, 2008.

[7] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, Building a
large annotated corpus of english: The penn treebank, Computa-
tional Linguistics, vol. 19, no. 2, pp. 313–330, 1993.

[8] M. Marcus, G. Kim, M. A. Marcinkiewicz, R. Macintyre, A. Bies,
M. Ferguson, K. Katz, and B. Schasberger, The penn treebank: An-
notating predicate argument structure, Proceedings, ARPA Human
Language Technology Workshop, pp. 114–119, 1994.

[9] N. Xue, F. Xia, F.-d. Chiou, and M. Palmer, The penn chinese tree-
bank: Phrase structure annotation of a large corpus, Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora (EMNLP/VLC-2000), vol. 11, pp. 207–238, 2005.

[10] [Online]. Available: http://www.ldc.upenn.edu/
[11] K. Toutanova and C. D. Manning, Enriching the knowledge

sources used in a maximum entropy part-of-speech tagger, Pro-
ceedings, EMNLP/VLC 2000, pp. 63–70, 2000.

[12] R. Levy and G. Andrew, Tregex and tsurgeon: tools for querying
and manipulating tree data structures, Proceedings, 5th Interna-
tional Conference on Language Resources and Evaluation (LREC 2006),
2006.

[13] E. R. Gansner and S. C. North, An open graph visualization
system and its applications to software engineering, Software -
Practice and Experience, vol. 30, pp. 1203–1233, 1999.

[14] A. Pnueli, The temporal logic of programs, Proceedings, 18th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 46–57,
1977.


