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ABSTRACT
Augmented multitouch interaction provides a better user ex-
perience, but requires the integration of other input sources,
e.g., a digital pen, each featuring an own API. Our approach
to a multitouch table is realized as a service-oriented archi-
tecture combining these different aspects under the hood of
a common API. Their use make our table work with a vari-
ety of input devices and offer the opportunity of extending
the capabilities by adding new services.
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INTRODUCTION
Gesture based interfaces have been around for years. Start-
ing from light pens that appeared in the late 1950s up to
Tablet PCs that can be bought off-the-shelf, today. Unfor-
tunately, most of these devices, including the newer ones,
restrict the user to poking on standard interfaces of win-
dows, icons, menus and pointers. These techniques are still
far from a seamless interaction between a human and a com-
puter. The vision, as shown in the famous movie “The Mi-
nority Report” in 2002 is still not reached for the public.
There are some first approaches like the iPhone, but most
of what is done, especially for larger displays, happens at
research institutes.

In this paper we introduce our approach towards this vision.
One of the goals of the development was to build a table that
is suitable to develop concepts for such a seamless interac-
tion. But there are also other interaction techniques accom-
panying multitouch interaction. One of them is the use of
pen and paper to avoid media discontinuity, e.g., when tak-
ing notes. Hence, note taking should also be usable on a
table. A suitable tool for writing and annotating digitally is
the Anoto Pen [2]. It is designed to work on physical docu-
ments but offers a high potential to be also used with digital

Figure 1: Schematic overview of the table construc-
tion

documents. This is the goal of several paper toolkits like Co-
Scribe [10] that combine the interfaces pen, paper, and PC.
CoScribe is developed at our research institute enabling us
to benefit from this framework directly. Its strength is the
unified interaction on paper and screens, thereby providing
equal support for physical and digital documents.

In the following sections, we describe an extensible and flex-
ible architecture for touch and pen interactive tables. We
show three different scenarios which we can support with
our own image processing software: touch detection (finger
and palm), pen detection, and marker detection. As appli-
cation scenarios we describe an Annotated Photo interactive
demo and the integration of DiamondTouch. The latter is
supported by a TUIO [5] bridge translating our custom pro-
tocol to the TUIO protocol. This way, a large amount of
existing applications relying on this de-facto standard can
be run on our table.

The variety of the demos show that our table can be used
with different input devices which are easy to integrate be-
cause of the extensible architectural design of our software.

TABLE CONSTRUCTION
The table that we constructed is a rear projection table as
shown in Figure 1. A Full HD data projector is used for
displaying the image from the PC, via a mirror. For this ap-
plication, a thin foil mirror has to be used, because conven-
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Figure 2: Software Architecture

tional mirrors produce duplicated ghost images. The image
is mirrored to the display surface of the table. The display
has a size of 100cm x 56cm with a 16:9 ratio and Full HD res-
olution of 1920x1080 pixels. The finger touches are recorded
by a PointGrey infrared (IR) camera which is mounted close
to the bottom right corner of the mirror. This camera posi-
tion was chosen to avoid the disturbing reflections caused by
the projector’s lens. The camera itself is equipped with an
IR pass filter and a wide-angle lens. The wide-angle lens al-
lows for a short distance to the display surface. The software
to process the images is explained in the sections below.

The display surface consists of four layers. Starting from
the top, there are the following layers, each having a special
purpose:

1. Acryl glass protection layer (1mm)

2. Transparent foil with Anoto pattern

3. Back projection foil

4. Acryl glass base plate (5mm)

The first acryl glass layer shields the underlying Anoto foil
from finger touches and ink writings with the Anoto pen.
It allows for a more comfortable interaction when dragging
with the fingers for a longer time. The Anoto foil has a
printed Anoto streaming pattern that is needed to detect
the pen strokes. The third foil displays the image coming
from the projector. The acryl glass at the bottom has a
stabilization function.

The following section gives insight how this setting is used
for multitouch and other interaction techniques.

ARCHITECTURE
Figure 2 shows the architecture of our interactive table soft-
ware. The system is implemented as a set of loosely-coupled
services that are implemented using different programming
languages. All communication between components is per-
formed via MundoCore [1].

MundoCore is a communication middleware that was de-
signed for Ubiquitous Computing to integrate software com-
ponents in a heterogeneous environment. It provides a com-
mon set of APIs for different programming languages (e.g.,

Java, C++, Python, C#.NET) on a wide range of differ-
ent devices. The architectural model addresses the need for
proper language bindings, different communication abstrac-
tions (publish/subscribe, distributed object computing, and
streaming), peer-to-peer overlays, different transport proto-
cols, different invocation protocols, and automatic peer dis-
covery. MundoCore is open source and available from the
homepage of our lab under the Mozilla Public License.

MundoCore builds on publish/subscribe as basic abstraction.
This scheme provides channels, which interconnect output
ports (publishers) of services with input ports (subscribers)
of other services. Channels are a suitable means to trans-
port messages, such as touch events, pen events, or video
images. MundoCore is well-optimized and facilities low-
latency and high-bandwidth communication. Over Gigabit
Ethernet, the transmission of an event between two services
takes 0.5ms and video streams can be transmitted with up
to 600 MBit/sec. In comparison to that, the latency caused
by camera framerate limitations or by the Bluetooth con-
nection of an Anoto pen will always be higher.

For our interactive table system, MundoCore gives us great
freedom and allows us to choose the language and runtime
system best suited for the implementation of a specific ser-
vice or application. The demo scenario described in this
paper uses four different kinds of processes: 32-bit C++,
64-bit C++, C#.NET, and Java.

The Mundo Touch Image Processor (MTIP) as the core ser-
vice in this architecture processes the camera images. The
camera is mounted inside the table and records the touch
surface from below. MTIP implements all image process-
ing steps and generates touch events that are published to
a MundoCore channel. MTIP is implemented in C++ for
optimal performance. Because the computer hosting MTIP
runs 64-bit Windows and the PointGrey API is used to ac-
quire images from the camera, MTIP has to be a 64-bit
application as well.

Most image filters are directly integrated into MTIP. How-
ever, it is also possible to implement filters as external Mundo-
Core services. In this case, MTIP sends a video stream to
the external service and receives an output video stream or
vector data in return. An example for this is the integration
of the used marker tracking library, we use the (commercial)
Studierstube [7] Tracker library. Currently, we only have a
32-bit version of this library, what makes it impossible to
integrate it directly into MTIP. Hence, we decided to imple-
ment marker tracking as an external filter service.

The TUIO bridge receives touch events from MTIP and
translates them to TUIO messages. Hence, arbitrary multi-
touch applications can also be used on our table.

To access the Anoto pen, we use the (commercial) Interac-
tive Surface Development Kit [6]. Anoto pens have built-
in cameras to read a special pattern printed on the table’s
surface and send coordinate information to a computer via
Bluetooth. Since the SDK is provided as a .NET assembly,
the Pen Driver service was implemented in C#. The ser-
vice records pen events and publishes them to a MundoCore
channel.



Figure 3: Screenshot of the Mundo Touch Image Processor (MTIP)

The Photo Demo which is described later on shows the com-
bined use of Anoto events and MTIP events.

MTIP
The Mundo Touch Image Processor (MTIP) is a customiz-
able application that allows to detect various touch events
based on image processing. In general, MTIP performs the
following processing steps:

1. The image is acquired from the camera.

2. The image is processed in one or multiple filter chains.
Each chain ends with a component that extracts fea-
tures from the image, such as geometric coordinates,
or ID information.

3. In the geometry processing step, inter-frame and inter-
chain aspects are handled. For example, a detected
contact is labeled with an ID that remains constant
until it is released. It is also possible to combine the re-
sults of multiple image processing chains, e.g, masking
of nearby finger contacts if a pen contact is detected.

4. Event notifications are generated and sent to the ap-
plications using MundoCore channels.

Image Processing
Image processing is based on a filter graph. The use of
only unary operations make it possible to display this graph
as a tree. Image processing starts with a set of common
preprocessing filters that are needed by all following oper-
ations. Then the data flow splits up into several dedicated
filter chains. In the following, we describe the recognition
of finger touches, palm touches, pen touches, and marker
detection. The expanded filter tree is shown in Figure 3.

Preprocessing
The head of the filter list contains three filters that are re-
sponsible for the common preprocessing steps.

Filter Parameters
Mirror X
Mask (mask polygon)
Histogram

First, the image is mirrored horizontally, because the record-
ing camera is mounted inside the table. Alternatively, the
mirror operation could automatically be handled later on
by a geometric operation, based on the calibration data,
but displaying images when, e.g., calibrating the table is
more intuitive to the user when it is not left-right reversed.
Next, the mask filter removes regions around the surface
that might contain disturbing spots.

The histogram filter calculates a histogram of the image as
an input for the auto exposure function of MTIP. Most cam-
eras have built-in auto exposure functions, however, these
often do not perform well in tracking applications. The auto
exposure function of MTIP provides better results mainly
because of two reasons. First, the histogram is calculated
after cropping the insignificant regions of the image. Hence,
regions close to the interactive surface are not taken into
account for auto exposure. Second, MTIP ignores small
saturated white spots in the image without changing the
camera’s exposure parameter. Such saturated spots can be
caused by IR emitting pens on the surface or by reflecting
markers, resulting in a degradation of the finger detection.
In such cases, the camera exposure must not be changed.

Finger processing
The following filter chain was designed for shadow tracking
to detect finger contacts on the surface. These contact points



will be visible as dark spots.

Filter Parameters
Highpass size=6, amp=10
Lowpass size=2
Invert
FindSpots minarea=4, maxarea=400, weight=0.3

First, we apply a highpass filter to eliminate the uneven
lighting of the surface and to extract spots with the size of a
finger. The size parameter of the filter is set such that only
small spots, as they are caused by a finger, pass through the
filter. Since the contrast of fingers on the surface is only
a few levels of gray, the filter multiplies the result with an
amplification factor.

As a side-effect, the highpass filter also amplifies noise caused,
e.g., by the analog parts of the camera. To remove high fre-
quency noise, a lowpass filter is applied next. The filter’s
size paramter should be as small as possible, but it should
be big enough to suppress the detection of contacts that
would be recognized because of noise.

Because shadow tracking is used, the image is inverted next.
Finally, a FindSpots filter is used to extract the center co-
ordinates of all bright spots. Important parameters of this
filter are minarea, maxarea, and weight. minarea specifies the
minimum permitted area of the bright spot in pixels. This
margin determines the sensitivity of the filter, but also its
susceptibility to noise. maxarea specifies the maximum per-
mitted area of the spot in pixels. weight defines how “full” or
“hollow” a spot may be. It allows to mask, e.g., the effects
caused by the edges of objects lying on the surface.

It is noteworthy that we do not use a “classical” background
removal step. Such a background removal filter records a ref-
erence image and then subtracts the reference image from
the acquired camera image. Our tests with this filter, which
is also supported by MTIP, proved that such a filter has a
bad performance. The question is when such a reference im-
age should be taken. Clearly, the answer would be: when
the surface is not touched. However, this cannot be easily
detected at this processing stage. Also, if the user remains
touching the same position for an extended period of time, or
a marker stays on the surface, this cannot be done. Another
possible solution would be to record every other frame with-
out IR illumination to get the reference image. However,
this does not help for shadow tracking, reduces the effective
frame rate, and makes the table setup more complicated.

If a Frustrated Total Internal Reflection (FTIR) setup or if
an infrared backlight is used, then finger contacts will be
visible as bright areas. In this case, the same considerations
as above apply with only little effects on the setup of the
filter chain. The Invert filter has to be disabled or removed
and the parameters of the highpass filter can be tuned for
optimal results.

Palm processing
The following filter chain was designed to recognize the hand
or palm.

Figure 4: Reflective ID Markers

Filter Parameters
Highpass size=40, amp=10
Lowpass size=20
Invert
FindSpots minarea=100, maxarea=10000, weight=0.3

This filter chain also uses a highpass filter. This filter again
removes the uneven lighting of the surface, which has a very
low frequency. The size parameter has a relatively large
value and therefore allows to pass the spots caused by a
hand or palm. After that, the lowpass filter blurs individual
fingers. Again, the image is inverted next because of shadow
tracking. Similar to the finger processing chain, a FindSpots
filter is used to extract the center coordinate of the bright
spots.

Marker processing
We use the Studierstube Tracker [7] for marker tracking.
For AR applications such markers are typically printed on
paper. In our case we want to be able to recognize markers
through the table surface containing a back-projection foil,
hence we have constructed our own markers.

The black regions of a marker are realized by 3M reflective
foil reflecting IR light coming from under the table. The
white parts of the marker are implemented by cutting out
the corresponding parts from the reflective foil. The foil is
then sticked to a dark surface. Finally, the marker can be
attached to a physical object that should be tracked on the
table. Two such markers are shown in Figure 4.

Filter Parameters
Gamma low=128, high=255, gamma=1.0
Invert
Mirror X
ExtFilter channel=stbracker

For image processing, the contrast between the black and
white levels is increased using a gamma filter that reduces
the input range. Next, the image is inverted and mirrored
back to its original orientation. The resulting video stream is
then published to the channel stbtracker.image and the filter
receives marker information on stbtracker.coord. The actual
marker detection is performed in an external MundoCore
service.

Spot Detection
The field of mathematical morphology [9] provides the the-
oretical foundations and building blocks for the necessary



image processing operations. The FindSpots filter performs
the following steps to determine the coordinates of bright
spots in the image:

1. First, the grayscale input image is converted to a bi-
nary image with a hysteresis threshold operator. This
method proved to be quite robust against the sampling
noise of the camera.

2. Next, the algebraic area opening is calculated and sub-
tracted from the image. This operation takes a pixel
count as parameter and eliminates all bright areas larger
than this threshold.

3. Finally, the center coordinates of each bright spot are
determined. This is achieved by calculating the mean
value of all bright pixel coordinates of a spot. Conse-
quently, the resulting pixel coordinates have sub-pixel
accuracy.

Vector Processing
After the feature extraction from the image, the features are
passed to the tracker components in the vector processing
stage. The FindSpots filters in the different chains only de-
termine the center locations of bright spots on a per-frame
basis. Hence, they do not provide enough information to
distinguish if a finger was moved, a new finger contact ap-
peared or disappeared. Therefore, the tracker components
also consider inter-frame aspects. If a spot is reported for
the first time, then the tracker assigns a new ID to the spot
and generates a down event. If a spot is no longer reported,
then the tracker generates an up event. The tracker ana-
lyzes each two consecutive frames and tracks all spots on a
maximum likelihood basis. Hence, IDs stay assigned with
the spots.

Trackers use a FindSpots filter as their main source of infor-
mation. Optionally, a second FindSpots filter can be speci-
fied in the exclude parameter. The exclude option allows to
remove spots from the main source. This is useful, e.g., if a
disturbing effect is detected with another FindSpots filter in
parallel. This way, falsely detected contacts can be removed
in this stage.

Finally, the tracker converts the coordinates to normalized
screen coordinates. This is necessary to take the properties
of the camera and its placement into account. The neces-
sary transformation parameters are determined during cali-
bration which is described next.

Calibration
MTIP supports the calibration process in its user interface.
The application displays a point grid and the user has to
touch one point after the other. This allows the applica-
tion to know the relationship between several points in the
camera’s coordinate system and the points in the projec-
tor’s coordinate system. MTIP uses these calibration points
together with 2D spline interpolation to transform between
coordinate systems.

The calibration procedure can also be done with the Anoto
pen. In this case, for each contact, three pieces of infor-
mation can be recorded: The location of the spot in screen

Figure 5: Architecture of the annotated photo demo

(projector) coordinates, the position of the contact in the
camera’s coordinate system, and the position of the pen in
Anoto pattern coordinates. This also allows to make the
calibration process more precise in general, because the pen
can be placed more accurately than a finger. Moreover, the
pen also provides a force parameter which is exploited to ex-
plicitly confirm a calibration point by pressing the pen down
firmly.

PHOTO DEMO
As a proof of concept we implemented a demo that shows
the potential of our approach. Imagine a group of users
viewing photos. They are standing around the multitouch
table where some photos are displayed on the screen. The
users can modify these photos at their finger tips by moving
them around and resizing them. Additionally, they can take
a digital pen to annotate the photos. They can do this as
they would do it with physical objects. The pen can draw
with different colors. The color is changed by simply clicking
on a colored area at the top left corner of the screen.

The architecture of the demo is shown in Figure 5. The
Photo Demo was implemented in C# using WPF. We chose
.NET for this application, because WPF provides a fast and
powerful framework for creating user interfaces. The Pen
Driver acquires data from the digital pens and publishes the
resulting stroke streams to a MundoCore channel. Touch
events are detected by MTIP, which publishes these events
to another MundoCore channel. The annotated photo demo
receives both event streams and integrates them into the
user interface.

The demo shows the ease of extension to incorporate other
input sources using the same API by means of the underlying
Mundo middleware.

TUIO BRIDGE
TUIO [5] defines a protocol on the basis of OSC and an
API for tangible multitouch surfaces that has become a well-
known de-facto standard. Echtler states in [4] that“although
TUIO has been designed with tracking of tangible objects
in mind, it has become a de-facto standard for multitouch
data”. It features several implementations in different pro-
gramming languages and is used in a variety of projects.
The main goal of these projects is to support higher-level
interaction. Most of them are based on DiamondTouch [3].
A prominent example is the DiamondSpin Framework [8].
DiamondSpin is a toolkit written in the Java programming
language. It allows the continuous rotation of windows and
controlling the desktop using multiple touch points. If this
protocol is supported, all the applications that are developed
using this technology will be usable.



As mentioned above, we use MundoCore for communica-
tion means. In order to make the TUIO protocol usable, we
implemented a bridge in Java to fill this gap. The bridge
subscribes to the corresponding MundoCore channel and
consumes multitouch events. It is also a fully implemented
TUIO server, that sends TUIO messages. We follow the
version 1.1 of the specification which is the most recent one.
The bridge service was implemented in Java, because this is
the “default programming language” in our lab. In contrast
to the events that are sent over MundoCore, the TUIO ob-
jects contain more information such as a session identifier,
motion acceleration and rotation acceleration of the object
or cursor and a time stamp. MTIP delivers a continuous
flow of the following information: id of the touch point, the
x and y coordinates of the touch point, the size of the touch
point, and the state. The state can be one of down, up and
move. The bridge has to take care that these missing infor-
mation pieces are filled correctly. Therefore, the bridge has
to maintain a cache of the received points to determine, e.g.,
the acceleration data. Additionally, the bridge also reduces
the flow of the information flooding from MTIP by sending
only messages, if there were changes in the data.

The bridge also shows the advantages of the channel-based
information concept that is inherent to the Mundo middle-
ware. It is very easy to add post-processing components
that allow the use of higher level context and derived data,
thus allowing for a high flexibility.

SUMMARY
In this paper we described our approach of a multitouch ta-
ble. The table can be used by multiple users at the same
time. It is not restricted to touch interaction only, but can
also be used, e.g., with an Anoto pen. Ongoing work ex-
ploits the use of other tangibles and their identification with
markers. The underlying image processing software features
flexible filter chains that enable us to support multiple in-
put sources and different tracking setups. For instance, it is
possible to use infrared back-illumination, FTIR, as well as
shadow tracking.

The software is developed at our institute integrating some
off-the-shelf libraries. It utilizes the MundoCore middleware
that allows for a high flexibility. The use of MundoCore
allows for a real service-oriented architecture where it is easy
to make use of these libraries or extend the capabilities of
our table by adding new services.

VIDEO DEMONSTRATION
A video demonstration of our system can be accessed un-
der the following URL: http://atlas.tk.informatik.tu-
darmstadt.de/Users/erwin/eics2010.html
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