
Application of Subject-oriented Modeling in
Automatic Service Composition

Erwin Aitenbichler and Stephan Borgert

Technische Universität Darmstadt, Hochschulstrasse 10, 64289 Darmstadt, Germany

Abstract. Next generation SOA systems promise to enable an “Internet of Ser-
vices” (IoS) - an open environment, in which every participant is free to offer
and consume services. Such an IoS gives businesses the opportunity to outsource
parts of their internal processes and to replace them by using external services.
However, businesses must ensure that external services are compatible with their
processes and that they can quickly adapt if service offering changes on the mar-
ket. This raises the need for a process definition language with a formal founda-
tion and well-defined semantics. In this paper, we discuss the suitability of dif-
ferent process definition languages for automatic service composition, show that
subject-oriented modeling with PASS is well-suited for this domain, and how
automatic service composition is implemented in the Theseus/TEXO project.

1 Introduction

Service-oriented Architecture (SOA) is an architectural style that facilitates loose cou-
pling of components, and consequently enables flexible selection and substitution of
services. However, todays SOA systems are rather closed. They are only used within
the boundaries of an enterprise, or sometimes within conglomerates of enterprises with
long-standing cooperations. To match the reality of Business Value Networks, current
systems must evolve towards open service environments.

A Business Value Network (BVN) emerges from dynamic interactions of loosely-
coupled organizations, which are legally distinct but economically interdependent, per-
forming different value-creating roles (e.g., suppliers, distributors, service providers,
infrastructure providers) that leverage their core competencies in order to flexibly craft
optimum response to rapidly changing markets and customer demands. Value is created
via dynamic exchanges of shared information and resources among these organizations
engaged in complex and co-evolving processes wherein dominant players can shape the
network context [1].

The term Future Business Value Network (FBVN) inherits this concept and stands
for a conceptional framework which describes organization models with configurations
of value adding collaborations within cooperative social networks among enterprises,
(public) organizations, and individuals. A further characteristic is the aim to achieve a
common set of goals enabled through the Internet of Services (or any other upcoming
technology framework). FBVNs are motivated by the marching processes of outsourc-
ing, tertiarisation, globalization, and technical innovation.



The basis for such an Internet of Services is currently developed in the large-scale
Theseus Programme [1]. Building on the notion of a SOA, interacting software com-
ponents can be loosely coupled and distributed over the Internet. The Theseus/TEXO
platform allows for a fully decentralized service provisioning, since service consumers
and providers are communicating directly with each other, in a peer-to-peer manner.
The market participants are brought together by a number of central entities, such as
the service marketplace and the community portal.

Such an Internet of Services gives businesses the opportunity to outsource parts of
their internal processes and to replace them by using external services. In an open ser-
vice market, where anybody is allowed to offer services, it seems natural that there will
be numerous offers for services providing the same functionality. Hence, the customer
can leverage the effects of an open market, concentrate on his core business, and save
costs. However, the services offered will still be different in many details, such as their
quality and how their internal processes are realized. Consequently, the customer in a
B2B scenario must ensure that his overall process and the processes of external services
are compatible with each other.

For example, public institutions in Germany have to stick to a clearly defined buying
process. It defines how the institution has to verify the past behavior of a supplier and
that he has not been blacklisted, how offers have to be invited, how offer evaluation
meetings have to be organized, how offers have to be evaluated, which order approvals
are necessary, how orders have to be made, and how payment is made. It also defines
that suppliers cannot ask for pre-payment and must not charge shipping costs. Now,
if a supplier would insist on pre-payment, the buying process would fail, because the
customer is not allowed to do so.

However, the main issue with this example is the time when the process incompat-
ibility is discovered: in the middle of the process - which is much too late. Similarly,
process compatibility is an important aspect in the automotive industry. The processes
for ordering components at suppliers, shipping to the car manufacturer, payment, etc.
must match and all activities must be executed in the correct sequence and at the right
time, such that the overall process is successful and completes in the designated time.

Consequently, one important aspect is to verify - before a service is purchased and
the process is executed - that all potential messages flowing between the process partic-
ipants can be handled adequately, that all activities are executed in the correct sequence,
and that the process eventually terminates. In order to test process compatibility auto-
matically, this first raises the need for a suitable process description language. Because
the intricacies of how process models are described and maintained are rooted in Busi-
ness Process Management (BPM), we first discuss the current state of BPM in industry
and the associated mainstream process description techniques in Section 2. Next, we
describe Subject-oriented BPM and the PASS language, which are the basis of our auto-
matic service composition approach presented in Section 3. In Section 4, we present the
current state of the automatic service composition implementation in Theseus/TEXO.
Related work is discussed in Section 5. Finally, the paper is concluded in Section 6.



2 Current Issues in BPM

The mainstream process description languages used today lack a formal foundation
and well-defined semantics (e.g., EPC, BPMN), or they are too low-level (e.g., BPEL).
Consequently, such description formats do not permit computers to reason about pro-
cesses. Beside these technical aspects, BPM also suffers from several other problems,
as current practice in the implementation of BPM projects shows.

2.1 Lack of Process Governance

A first fundamental problem is that processes are not ‘lived’ as they have been designed
and modeled. Practitioners report that the vast majority of decisions made in a busi-
ness are still based on gut feel, intuition and experience. “We think the process works
like this, so we should do X?” or “Customer orders were delayed in the past primarily
because of Y, so go fix that!” [2].

If processes had initially been modeled, then the corresponding models are often not
kept up-to-date. A recent study by Gartner reveals that many BPM projects will fail after
implementation because the proper supporting disciplines are not implemented: “Too
many user organizations are adopting BPM technologies without applying BPM disci-
plines via the competency center, and find that their efforts do not deliver the promised
results, and their BPM initiatives are disbanded.” [3]. Similarly, Forrester underlines
that process support is not only about technology: “Too many organizations believe
they can implement BPM with nothing more than a comprehensive set of tools and a
good return on investment story” [4].

The lack of up-to-date process models also impedes the assurance of process quality,
analysis of process efficiency, and process improvement. Alone the discovery of how a
process actually works in a business can cause significant costs: BPM consultants claim
that they spend around 40% of the project time finding out how processes in a business
actually run.

2.2 One-shot Transformations

When parts of a process are implemented as software components, such as Web Ser-
vices, then often so-called one-shot transformations are made. For example, the im-
plementation starts with a business analyst creating a BPMN model of the process,
which emphasizes the business aspects. However, from a technical point of view, these
models are abstract, inexact, and omit many essential technical details that would be
necessary to be able to execute the process directly on a computer. Next, a software
engineer creates an executable BPEL process model based on the BPMN. This is either
done manually or by means of automatic transformations. However, because BPMN
lacks formal semantics, such a transformation can at best produce a “BPEL skeleton”,
which contains the structure of the process, but the engineer has to fill in all the techni-
cal details manually. Consequently, engineers transform from abstract to more concrete
models and add details to the model. The relationships between model elements from
the concrete to the abstract model get lost and it is not possible to automatically update
the abstract model containing the business perspective.



2.3 “Outlook Processes”

Another common implementation of processes are so-called “Outlook processes”. Such
processes contain activities like “send email to financial accounting”, meaning that an
employee uses ordinary email to perform a process step. Such processes have two major
drawbacks.

First, the progress of process instances cannot be monitored directly. If a customer
asks for the current state of a process instance, it boils down to locating the person
who had last acted on the process and asking her. While mail server products, such as
MS Exchange, support message tracking, the relationships between mails and process
instances cannot be discovered easily.

Second, because the email client allows unbounded communication, new commu-
nication paths between process participants can emerge easily. In reality, this changes
the process, but this change will usually not make it back into the process model.

3 Process Modeling

In the following section, we discuss the requirements for a process modeling language
as needed for our automatic service composition approach.

3.1 Requirements

Some important aspects of this process modeling language are:

– The process description language needs formal semantics. This property is needed
to test the compatibility of processes, e.g., of the main process with the subprocess
implemented by an outsourcing partner and to verify with formal methods that the
process is correct.

– The description must have a subject-oriented perspective. Beside the description
of what is done in the process, it must be clearly stated for each activity, who is
responsible for it. This is important to decompose the overall process and to identify
its constituent subjects for which services are inserted.

– The process model must be directly executable or it must be transformable to an
executable process format without the need to manually add details to the generated
model.

– The model must be hierarchable, i.e., it must be possible to move up and down
in terms of the abstraction level. It should enable arbitrary refining or clustering of
behavior without the need to leave the model. This is the key feature to eliminate
one-shot model transformations.

– The language should equally support software services as well as human services.

To enforce governance, a valid process model must be in the information system
that corresponds to the execution of the process in real world at all times. This is not
only a requirement for automatic service composition, it is rather a general requirement
to drive the next generation of BPM.



Instead of “Outlook Processes”, execution platforms for the business process are
needed, which do not allow interactions between participants beside the process. This
forces the business to stick to the modeled process. There are no costs for discovering
how the process works when it should be evaluated or made more efficient. Of course,
this comes with a cost. For example, the business has to install several key users that
are responsible for maintaining the process model. This approach has been successfully
shown in [5].

Given these requirements, we have chosen subject-oriented modeling and the de-
scription language PASS.

3.2 Subject-oriented Modeling

Subject-orientation introduces an approach that gives balanced consideration to the ac-
tors in business processes (persons and systems as subjects), their actions (predicates),
and their goals or the subject matter of their actions (objects) [6, 7]. It is based on the
fact that humans, machines, and software services can be modeled in the same manner.
Every one of them receives and delivers information by exchanging messages. Humans,
e.g., exchanges emails, office documents, or voice messages.

3.3 PASS

The Parallel Activities Specification Scheme (PASS) [8] language is an implementation
of subject-oriented modeling. It is founded on top of the process algebra CCS [9] (Cal-
culus of Communicating Systems) and all language constructs of PASS can be trans-
formed down to pure CCS. Process algebras provide a suitable means for modeling
distributed systems. They offer well-studied algorithms for verification and for deter-
mining behavioral equivalences. In addition, the CCS composition operator facilitates a
hierarchization and modularization of the model, allowing to handle business processes
of arbitrary size. At the basic level, PASS only distinguishes between three basic types
of activities: send message, receive message, and function.

3.4 PASS Extensions

To describe process patterns, the PASS language was extended. In contrast to regular
PASS graphs, process patterns do not have to be fully connected graphs and may contain
wildcard operators. Process patterns are used for service matching and their modeling
differs from that of fully-specified processes in the following two aspects:

– In the model of a pattern, only activities are specified, which are essential for the
process. This simplifies modeling, because the service engineer does not have to
specify all functionalities and does not have to take care about each detail activ-
ity. E.g., he could omit modeling the payment branch of the process (, because its
details might not be vital from a customer’s point of view). If services have such
branches, they would still be included, unless the engineer explicitly models the
exclusion of certain behavior.



– The order of activities can be defined in a more general way as in usual process
models. The wildcard operator can be used in conjunction with multiple isolated
subgraphs to express a logical order between activities, instead of a single sequen-
tial order. This is useful, e.g., to enforce a certain behavior or communication pat-
tern, while only concentrating on the essential parts of a process.

4 Automatic Service Composition

The desired result of service composition is specified by the composition goal. The
goal consists of a description of the overall behavior, functional, and non-functional
properties. In the following, we concentrate on the description of the behavior.

The behavior of the composition is described by a fragmented PASS process model.
This model is underspecified, i.e., it only specifies the essential and basic parts of the
desired process, but omits unimportant details. Consequently, it contains all subjects
participating in the process and for each subject, it may contain a process pattern in-
stead of a fully-specified process. Process patterns are used later to search for suitable
services. We denote a model as being fully specified, if the behavior of all its subjects
is fully specified. Models containing one or more process patterns are denoted as frag-
mented models.

Fragmented models should neither be overspecified nor be underspecified. If a pat-
tern is overspecified, then the likelihood to find suitable services implementing this
process diminishes. On the other hand, if a process is underspecified, then service can-
didates may bring unwanted behavior into the composition.

Process
Modeling
(PASS)

Service
Discovery &
Composition

Verification
of Service

Composition

Refinement
of Process

Model

Deployment
of Service

Composition

Generation of
Executable

(BPEL)

Development Time Binding Time

Fig. 1. Development process from fragmented model to executable process.

To specify the composition goal, we start with modeling an underspecified process
and then refine it as far as needed. These steps are supported by tools. The development
process is shown in Figure 1 and involves the following steps:

1. Modeling: In the first step, the initial fragmented PASS model is created. This
model is typically underspecified.

2. Discovery and Composition: All suitable services are discovered according to
the process patterns and constraints specified by the functional and non-functional
properties. Then, a list of possible compositions is constructed.



3. Verification: While the compositions constructed in the previous step already match
the structure of the desired process and its constraints, some compositions might
still violate formal properties. In this step, each composition is entirely transformed
into a CCS expression and then verified with formal methods.

4. Refinement: The developer inspects the service compositions found by the system
in the refinement editor. Because the model is initially underspecified, the system
might pull in services that expose unwanted behavior. The developer can exclude
such behavior by refining the fragmented model.

5. Deployment: Once the fragmented model has been sufficiently refined, it can be
deployed on the automatic service composition server. The server generates an ex-
ecutable BPEL process based on the fragmented PASS model and the candidate
services. The server can also periodically repeat the discovery, composition, veri-
fication, and generation steps to take new services that appear on the market into
account.

4.1 Modeling

The process is modeled using the Eclipse-based editor jPASS by jCOM1 [10]. Figure 2
shows the Subject Interaction Diagram of the TEXO EcoCalculator demonstrator.

Chemical
Database

Chemical
Database

Customer
Customer

Eco
Value

Investigator

Eco
Value

Investigator

Chemical
Lab

Chemical
Lab

Material
Specification

Eco Value

Error

BOM

Eco 
Certificate

Error

Material
Specification

Eco Value

Error

Material Sample

Eco Calculator Composite Service

Fig. 2. Subject Interaction Diagram of EcoCalculator.

This diagram describes the relationships between subjects and the types of messages
exchanged. In this scenario, a government agency establishes a new “eco label” for
cars meeting certain ecological requirements. One of the requirements is a concept for
disassembling and recycling and the restricted use of certain environmentally harmful
materials. The service provides a compliance check and cost simulation. Its process
involves the following subjects:

– Customer: An OEM can invoke the EcoCalculator service by sending a Bill Of
Material (BOM) to the service.



– Investigator: The Investigator is the main part of the EcoCalculator composite
service. It implements the government policy and orchestrates additional services.
The functionalities Chemical Database and Chemical Lab are provided by external
services.

– Chemical Database: Third party service that provides detailed chemical informa-
tion about materials.

– Chemical Lab: Third party service that provides a chemical analysis of (physi-
cally) provided material samples.

Receive
Order

Send
ecoValue

* *
Get ability

of recycling

f

Fig. 3. Fragmented process model of the subject Chemical Database.

Figure 3 shows the fragmented process model of the subject Chemical Database.
A fragmented model only describes the basic and essential parts of a process. Later,
during service discovery, it is used as a search pattern to identify matching candidate
services. In contrast to fully specified process, the fragmented model may contain wild-
card activities. Such a wildcard matches any sequence of activities in the fully specified
model of a service.

To make the matching of activities work, it is also vitally important that the activities
in the search pattern and in the process description of a service are modeled using the
same vocabulary. To ensure a consistent modeling, we introduce a so-called Activity
Catalogue. It is a taxonomy of possible service functions and is based on the NACE
catalogue [11] which is a statistical classification of economic activities in the European
Community.

4.2 Discovery and Composition

The first step in composition is to find matching service candidates. To match the frag-
mented process with service descriptions, we use the programmed graph rewriting sys-
tem GRL [12]. GRL stands for Graph Rewrite Library and is a Java library that provides
the core functions of a graph rewriting system by supporting queries and rewrite opera-
tions. Rewrite rules are described in the declarative language GRL-RDL (Rule Descrip-
tion Language). GRL operates on directed, attributed graphs, whose data structures are
defined by the respective application. Nodes and edges of the graph can be attributed
by arbitrary Java objects. Its basic building blocks are predicates (tests) and produc-
tions (rewrite rules). Rewrite rules are specified textually. Complex attribute tests and
transformations can be performed by calling Java methods from inside RDL programs.
RDL programs are compiled, optimized using a heuristic, and then executed on a virtual
machine. Hence, GRL provides highly efficient graph matching.



The service descriptions are used as work graphs and the goal specifications are
translated into query expressions in the language GRL-RDL. To match the pattern with
services, it is required that each service comes with a fully-specified PASS descrip-
tion. Applying graph algorithms leads to candidate lists for each specified pattern. The
fragments defined in the first step are used to discover candidate services.

4.3 Verification

In order to verify the correctness of a possible service composition, the first test is to
check the statical interfaces between the services. This involves the comparison of the
message types exchanged between the respective services. Next, the dynamic interface
is checked. This represents the communication behavior during runtime, such as the
order of messages that are exchanged.

While the graphical representation is suitable for matching process patterns with
service candidates, it is not suitable for verification. Hence, the PASS graphs are trans-
formed to a pure CCS description, which is then used as input for the verification algo-
rithms.

We currently use the CWB-NC Workbench [13] for running the verifications. CWB-
NC supports various behavioral equivalences as well as model checks. Firstly, this al-
lows us to identify services that expose equivalent behavior. At runtime, such services
might be used as a replacement, in case that the original service fails. Secondly, a chore-
ography conformance check can be performed. In a valid composition, it must be en-
sured that the involved services are able to communicate with each other.

4.4 Refinement

After the verification step, there may still be unwanted compositions, because the frag-
mented model of the service composition is initially underspecified. For each possible
composition, the system now generates a fully-specified process graph by combining
the process descriptions of its constituent services. The resulting process graphs are
displayed in the refinement editor, where the service engineer can now annotate activ-
ities and eliminate unwanted behavior. An activity can have one of the following four
states in the refinement editor:

– required: The activity is required and must be part of the resulting process.
– forbidden: The activity must not be part of the resulting process.
– allowed: The activity can be tolerated. It is not considered to be an essential func-

tionality of the process.
– unclassified: The activity does not carry an annotation. This is the initial state of

each activity.

4.5 Deployment

To determine all possible combinations of services, the first step was to discover all can-
didate services using process graph pattern matching. Next, these combinations were
checked in the verification step and all incorrect combinations were discarded. Finally,
for each valid combination, an executable BPEL process is generated, which orches-
trates the constituent services.



5 Related Work

Several recent research efforts have focused on dynamic service composition tech-
niques. Most of them are working on the execution level and extend the functionality of
the BPEL standard by using proxy services or additional annotations or descriptions. A
representative work is described in [14], where the authors introduce the VxBPEL lan-
guage, which is an extension of BPEL by incorporating variability. It enables rebinding
of services during runtime, substitution of service for optimizing purposes or in case
of in sudden unavailable services. In contrast to our approach, choreographies are not
supported. In addition, services provided by humans are not considered and there is a
shortage of formal verification techniques.

A Petri Net is a formal language for modeling concurrent systems and has been
widely accepted as formal foundation for business process modeling. Furthermore, it
provides a graphical and easily understandable notation. Petri Nets are object of re-
search for many years and current efforts are focusing on suitable constructs for auto-
matic composition and choreography descriptions. For example, Huangfu et. al. [15]
present an approach that addresses the issue of dynamic service composition by mod-
eling service behavior by Object Petri Nets. A service consists of a set of operations
and the paper introduces mapping rules from services to Object Petri Nets. A main
drawback of using Petri Nets is that the entire process has to modeled in a single net. In
contrast to this, we use a process algebra that supports parallelism. That allows to model
each service separately and then compose them simply by using the parallel operator.

Process algebras like π-calculus provide strong means for modeling concurrent sys-
tems like service compositions and are based on formal terms. Choreography modeling,
refining, and clustering are inherently supported. In addition, a rich theory to analyze
processes for equivalence is provided and also the capability to perform reasoning on
system properties and to verify process behavior. For this reason, current research ef-
forts in this area focus mainly on approaches for formal verification of services and
business process. Work on compliance and compatibility checks investigate the issue
of when a service can be replaced by another one [16, 17]. This is necessary when a
service of a process fails during runtime or for finding redundant services. COWS [18]
and SOCK [19] are designed for the purpose of automatic service composition. Further-
more, process algebras are often combined with other formalisms in order to be able to
specify more aspects of a service in a formal manner. E.g., some extensions exists, that
combine the π-calculus with ontologies [20, 21] and formal logics [20, 21] to describe
non-functional properties and access control policies. While these formal approaches
are also capable of formal verification and matchmaking, they usually do not consider
other aspects, such as the execution of the models, or the seamless integration of human
services. In contrast to Petri Nets, process algebras lack a graphical representation.

Human-centered process modeling is another area of growing research interest. Pre-
vious approaches for automatic service composition take mostly only software-based
services into account. Work on human-centered process modeling is very technology-
oriented and lacks formal methods for verification [22–24]. Also, choreography is not
supported, since most approaches are based on extending BPEL.



6 Conclusion

In this paper, we have presented a novel approach for automatic service composition,
based on process pattern matching.

An important prerequisite for this approach is a suitable process description lan-
guage. While business analysts are very comfortable with visualizing business pro-
cesses in a flow-chart format, most such formats used today in industry can only es-
tablish an interoperability on the human level. This creates a technical gap between the
format of the initial design of the business process and the formats for verification and
execution. In contrast to this, the PASS language fulfills three important properties:

– The formal foundation based on CCS allows formal verifiability.
– Its well-defined semantics allows direct execution.
– Its graphical representation is easily comprehensible by humans.

We have extended the PASS language with constructs to describe fragmented pro-
cesses. This allows an engineer to describe the goal of a service composition, while
focusing only on the essential and basic aspects of the process. In addition, we have
presented a method for automatic service composition based on matching such process
descriptions.

Acknowledgments This work was supported by the Theseus Programme, funded by the Ger-
man Federal Ministry of Economy and Technology under the promotional reference 01MQ07012.

References

1. BMWi: TEXO – Business Webs in the Internet of Services. http://theseus-
programm.de/scenarios/en/texo.html (2009)

2. Lees, M.: BPM Done Right: 15 Ways To Succeed Where Others Have Failed. Software AG
(March 2008)

3. Olding, E., Cantara, M.: Highlights from BPM Summit. Gartner, Inc., London (March 2009)
4. Savvas, A.: Cultural Resistance Main Cause of BPM Project Failure. Computer Weekly

(March 2005)
5. Konjack, G., Heckmaier, M.: AST – Order Control Process. In: this volume. (2010)
6. Fleischmann, A., Lippe, S., Meyer, N., Stary, C.: Coherent Task Modeling and Execution

Based on Subject-Oriented Representations. In: Task Models and Diagrams for User Inter-
face Design (TAMODIA). Volume 5963 of LNCS., Springer (2009) 78–91

7. Schmidt, W., Fleischmann, A., Gilbert, O.: Subjektorientiertes Geschäftsprozessmanage-
ment. HMD - Praxis der Wirtschaftsinformatik (266) (April 2009)

8. Fleischmann, A.: Distributed Systems: Software Design and Implementation. Springer
(1994)

9. Milner, R., ed.: Communication and Concurrency. Prentice Hall PTR (1995)
10. jCOM1: Welcome to the Future of BPM: S-BPM. http://www.jcom1.com (2010)
11. NACE: Revision 2. http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?

TargetUrl=LST NOM DTL&StrNom=NACE REV2 (2010)



12. Aitenbichler, E.: Entwurf und Implementierung eines programmierten Graphersetzungssys-
tems in Java. Master’s thesis, Institut für Technische Informatik und Telematik, Johannes
Kepler Universität Linz (2000)

13. CWB-NC: The Concurrency Workbench of the New Century.
http://www.cs.sunysb.edu/∼cwb/ (2000)

14. Koning, M., Sun, C., Sinnema, M., Avgeriou, P.: VxBPEL: Supporting Variability for Web
Services in BPEL. Information and Software Technology 51(2) (2009) 258–269

15. Huangfu, X., Shu, Z., Chen, H., Luo, X.: Research on Dynamic Service Composition Based
on Object Petri Net for the Networked Information System. Fifth International Joint Confer-
ence on INC, IMS and IDC (2009) 1075–1080

16. Wu, Z., Deng, S., Li, Y., Wu, J.: Computing Compatibility in Dynamic Service Composition.
Knowledge and Information Systems 19(1) (2008) 107–129

17. Bordeaux, L., Salaun, S., Berardi, D., Mecella, M.: When are Two Web Services Compati-
ble. In: Technologies for E-Services. Volume 3324 of Lecture Notes in Computer Science.,
Springer (2005) 15–28

18. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In:
Programming Languages and Systems. Volume 4421 of Lecture Notes in Computer Science.,
Springer (2007) 33–47

19. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus for Service
Oriented Computing. In: Service-Oriented Computing (ICSOC). Volume 4294 of Lecture
Notes in Computer Science., Springer (2006) 327–338

20. Agarwal, S., Rudolph, S., Abecker, A.: Semantic Description of Distributed Business Pro-
cesses. In: Proceedings of AAAI Spring Symposium – AI Meets Business Rules and Process
Management. (2008)

21. Markovic, I., Pereira, A.C., Stojanovic, N.: A Framework for Querying in Business Process
Modelling. In: Multikonferenz Wirtschaftsinformatik. (2008) 1703–1714

22. Canfora, G., Penta, M.D., Lombardi, P., Villani, M.L.: Dynamic Composition of Web Appli-
cations in Human-Centered Processes. In: Proceedings of the ICSE Workshop on Principles
of Engineering Service Oriented Systems. (2009) 50–57

23. Schall, D., Truong, H.L., Dustdar, S.: Unifying Human and Software Services in Web-Scale
Collaborations. IEEE Internet Computing 12(3) (May 2008) 62–68

24. Soriano, J., Lizcano, D., Hierro, J.J., Reyes, M., Schroth, C., Janner, T.: Enhancing User-
Service Interaction through a Global User-Centric Approach to SOA. Fourth International
Conference on Networking and Services (icns 2008) (2008) 194–203


