
An Unusual CS 1 With High Standards and Confirming
Results

Guido Rößling
roessling@acm.org

Max Mühlhäuser
Max.Muehlhaeuser@acm.org

Technische Universität Darmstadt
Dept. of Computer Science
64289 Darmstadt, Germany

ABSTRACT
Our department has opted not to do the“usual”CS 1 course.
We discuss the features of the resulting course, and how they
are evaluated by our students. While several elements are
unusual, evaluations have shown them to be very successful
and popular with our students. We hope this report will
inspire other educators to “think outside the box in CS 1”.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer & Infor-
mation Science Education - Computer Science Education

General Terms
Management

Keywords
CS1, game programming, Java, Moodle, Scheme

1. INTRODUCTION
One of the first things that many universities teach their

CS students is how to program. This is usually done in the
CS 1 course, which often teaches the basics of Java.

In discussions with several colleagues teaching “similar”
introductory programming courses at their home universi-
ties, it has become clear that the approach adopted by our
CS department is unusual in several regards. We therefore
want to present our approach for wider discussion, for a dual
purpose. On the one hand, we are always interested in feed-
back and supporting or opposing arguments regarding our
approach. On the other hand, we also hope that aspects of
our approach will meet the interest of other educators.

In this paper, we present the contents and structure of our
course and its accompanying teaching and learning materi-
als. We also present statistics and evaluations of learning
outcomes (as measured by assessments, exams, or student
feedback), and student attitudes towards our approach.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’10, June 26–30, 2010, Bikent, Ankara, Turkey.
Copyright 2010 ACM 978-1-60558-820-9/10/06 ...$10.00.

2. STRUCTURE OF OUR CS1 COURSE
Our CS 1 course is the first course in Computer Science

attended by students from several degree programs. It is
mandatory for students of Computer Science, Information
Systems, Computational Engineering, and Information Sys-
tem Technology. Additionally, the lecture is attended (but
not necessarily in the first term) by students of Mathemat-
ics and other degree programs with a minor in CS, e.g.,
students of physics, as well as by joint bachelors of CS and
a secondary degree program from the humanities.

The CS 1 course consists of two 90 minute lectures per
week for about 15 weeks, and a weekly 90 minute exercise.
The topics covered in the lecture are rehearsed during the
exercise sessions and then further trained by graded home-
work assignments. Exercise sheets are available on Monday
at 8 AM and are covered by the exercise sessions between
Tuesday and Friday, with homework due on Friday of the
following week. All students thus have at least one week be-
tween their exercise session and the deadline for the home-
work, and can prepare the homework for almost two weeks.

The regulations for passing CS 1 are essentially defined
by the CS department. As shown in Figure 1, students need
to gather points from homework assignments, a mid-term
exam and a final lab. If they have passed all individual
elements and also reached the required sum of points, they
are allowed to register for the final (written) exam.

Figure 1: Organization of the CS 1 course

The CS 1 course ends with a lab (described in more detail
in Section 4.3) and a written exam. The written exam tests
most of the course materials by providing tasks that cover
code reading and understanding, programming, and com-
plexity. Both mid-term exam and final exam take 2 hours.

169

So far, the CS 1 course may seem similar to many others—
expect perhaps for the “exam qualification” required for the
exam. However, since this is a regulation of our university,
we could not change this requirement, even if we wanted to.

In the next sections, we will address step by step what
makes our CS 1 course “unusual”, why we have chosen to do
it this way, and benefits or other effects this has caused.

3. UNUSUAL ORGANIZATIONAL ASPECTS

3.1 Schedule and Collaborating Educators
Since summer 2008, our university also accepts students

who want to start studying CS in the summer term. After
an unfortunate start in summer 2008, when students began
with the Java-based CS 2 (algorithms and data structures)
course, the CS Department decided to also offer a German
CS 1 course in the summer term. In the winter term, we offer
both a German and an English CS 1 course, thus resulting
in three CS 1 courses in each academic year.

The two lectures in the winter term are shared by two
educators. Instead of each educator holding one course,
each educator will hold one part of both courses in both
languages, with a switch between educators at roughly half
of the course. The workload for each educator is thus four
times 90 minutes per week, for about 6-8 weeks in sequence.
The second educator also helps out in the first phase by ad-
dressing audience questions raised in the learning platform.

While the workload during the“active”phase—90 minutes
of lecture on each day from Monday to Thursday—is rather
high, the collaboration means that it is limited in time. Ad-
ditionally, both educators can focus on “their” topic, and do
not have to be extensively familiar with both topics.

3.2 Extensive Use of a LMS
The lecture and exercises are held in appropriate rooms—

the auditorium maximum for the lecture attended by 600+
students, and a set of smaller seminar rooms for the exer-
cises. Both educators and the teaching assistants for the ex-
ercise groups also offer consultation hours. All else is done
electronically inside our Moodle learning platform, see [1]
and http://www.moodle.org.

The learning platform contains the lecture materials, ex-
ercise sheets and—after the deadline for a given homework
has passed—a model solution; sample exams published be-
fore the mid-term exam to help students prepare for the
exam, with a solution published about one week before the
exam; opinion polls, quizzes, a number of forums for target-
ted discussion, and a set of other features.

At (almost) any given point in time, at least some students
are likely to be online in the learning platform, including for
example Christmas and New Year’s Eve. One of the educa-
tors is highly present and also hosts and adminstrates the
platform. Our students quickly get the impression that their
answers are addressed “24/7”. While this is far from correct,
we have noticed that a fair number of questions were indeed
answered at night or in the early morning hours, for exam-
ple between 2:00 AM and 4:00 AM. While these postings
were not written by the educators, they still affected the
perceived usefulness of the learning platform.

Students appreciated that all information regarding the
course is held in the central LMS, together with search fa-
cilities and RSS feeds. From the educator’s point of view,
managing everything inside the portal has made organizing

and administrating the lecture far easier. Before, we had to
maintain a web page (regularly updated with new exercises
etc.), track a forum on a different server, coordinate with
tutors over a mailing list, and reply to email inquiries. All
this now essentially happens inside Moodle. For example,
even after the two lectures—attended by a total of about
680 actively participating students, with almost 1000 stu-
dents enrolled in the two courses—are over, there have still
been less than 20 direct email inquiries outside Moodle.

3.3 Modularized Lecture Recordings
To make learning our materials easier for our students,

we record each lecture and provide a link inside the learning
platform. Since our change to Camtasia—see, e.g., [6]—,
we can usually provide the lecture recordings on the same
day as the lecture. We also offer separate RSS feeds for the
Flash videos and podcasts.

Instead of “regular” 90 minute lecture recordings, we have
split each lecture into different subtopics. A typical lecture
will cover about four to six such topics. For example, the
slide set about inheritance, abstract classes and late bind-
ing contains 89 slides (including the title page and several
“table of contents” subpages). This slide set covers nine dif-
ferent subtopics, starting with a motivation for inheritance,
incremental programming as an analogy, and how to define
new object types in Java. The contents are presented in
two 90 minute lectures. Each subtopic of the slides is avail-
able as a separate recording, leading to a total of 9 record-
ings with a duration between 9 minutes (“overriding existing
definitions”, 4 slides) and 28 minutes (“abstract classes and
interfaces”, 12 slides).

Each recording is rendered into two different formats: as
a Flash video (including the slides with all live annotations,
the audio track, and a smaller video of the lecturer) and as
a podcast (size 640x480, slides with annotations and audio
track only). Thus, the above slide set ends up as 18 learning
resources for the students.

The 22 slide sets comprising our lecture materials are pro-
vided as individual ressources in the LMS. Each ressource
contains a link to the PDF file, a table of all recordings with
title, slide range (such as “T13.15-T13.24”), duration of the
recording, and a link to the Flash and Podcast recordings.

As the same course was held and recorded in the preceding
term, we provide access to the recordings of all lectures from
the previous term before the first lecture has even started.
This helps students to prepare before the lecture and to
rehearse the materials after the lecture. This especially con-
cerns those with little previous exposure to programming or
foreign students who may encounter difficulties in directly
understanding the educator. Three especially talented se-
niors from a senior high school also attended CS 1. As one
of the two weekly lectures starts at 8 AM, and thus at a time
when they had to attend high school classes, the recordings
and the LMS allowed them to be fully integrated in the
course, although they could not attend all lectures.

3.4 Bonus Points for the Final Exam
To improve the final grade, bonus points are awarded if a

certain minimum number of points was reached in the mid-
term exam, the final lab and the homework assignments.
These are factored into the exam points if sufficient exam
points were reached—typically, students require 30 out of
100 exam points to allow us to include the bonus, and 50

170

Points Comment Count Perc.

– no contrib. 160 16.3%
0.5 . . . 14.5 ≤ 5% reached 82 24.7%

180 . . . 209.5 qualified without bonus 80 10.8%
210 . . . 239.5 1× bonus (C- → C) 126 17.1%
240 . . . 279.5 2× bonus (C- → C+) 111 15.0%
270 . . . 299.5 3× bonus (C- → B-) 101 13.7%
300+ “perfect” score 65 8.8%

180+ qualified 483 65.4%

Table 1: Total points reached in the German and
English CS 1 course. 180 points were needed to
qualify for the exam, 210 were needed for a bonus.

points (including the bonus points) to pass the exam. In this
way, students can improve their final grade by up to one full
grade, e.g., from D to C. It is also possible to improve from
a “fail” grade to the (worst) “pass” grade if sufficient exam
and bonus points have been achieved.

Figure 1 illustrates the requirements that have to be met
to be allowed to register for the exam: at least 50% of the
homework points, 50 points (out of 100 base points) in the
final lab, 35 points in the mid-term exam, and a total of
at least 180 points out of the 100 points possible each in
homework, final lab and mid-term exam—and thus, 60% of
the points possible.

Table 1 illustrates the points reached by the 980 persons
enrolled in the German or English course. 65.4% of the 738
students who reached at least 15 out of 300 points achieved
the desired 180 points. Due to bonus points awarded in the
final lab (see Section 4.3), reaching more than 300 points
was possible—and 65 students managed to do so, with the
best student reaching a perfect score of 349 points. At the
first glance, it is also striking that 160 persons did not reach
even a single point. These 160 persons include the Java
educator, two additional staff members, 20 tutors and about
40 additional students from this number—the latter because
they signed up for both courses, but only contributed in
one of them. The remaining roughly 100 persons are not
accounted for and most probably are “visitors”.

4. UNUSUAL CONTENTS

4.1 Teaching Two Programming Paradigms
Our community of lecturers jointly responsible for CS 1,

consisting of three full and usually three (but currently only
one) associate professors, decided in winter 2004 to split the
CS 1 course in two parts.

The first part covers the fundamental elements of pro-
gramming, such as methods, recursion, abstraction, com-
plexity and functional abstraction. This part of the course
is taught using DrScheme and the How to Design Programs
(HtDP) teaching languages and follows the excellent book
by Felleisen et al. [3].

The second part of the course—about the last 8 weeks—
deals with Java. After addressing object-oriented program-
ming, inheritance and stepwise refinement, we teach our stu-
dents the essential elements of Java, including topics such
as polymorphism and generics, I/O streams and GUIs.

As far as we know, this combination of “half a term each

for functional and OOP programming” is unique. We have
decided to follow this approach for several reasons:

• We firmly believe that all CS students should have a
good understanding of the basics of programming.

• Programming languages like Java may be “too much”
for beginners. public static void main(String[] args)
alone can confuse many programming novices. Ex-
plaining this carefully at the start is difficult without
referring to things that will be learned later; not ex-
plaining it is also not a didactically good choice.

• The HtDP teaching languages are very easy and small,
and—perhaps most importantly—have almost no syn-
tactical elements. Compared to a rather “talkative”
programming language like Java, novices typically have
to read and write far less lines of code to reach a result.

• Several powerful aspects of functional programming
and the HtDP teaching languages allow us to introduce
some concepts comparatively easily, although they are
very expressive. One such element is recursion. Sev-
eral papers have discussed the importance—and often,
the difficulty—of teaching this “effectively”, e.g., [4, 2,
7]. Since we do not introduce loops in the first part of
the course, using recursion quickly becomes natural to
our students. Additionally, there is no effective way to
evade this, in contrast to Java, where each recursive
task could also be solved using loops.

Other expressive features that students quickly grasp
are anonymous non-recursive functions (lambda ex-
pressions) and higher-order procedures—which they
will occasionally miss when we switch to Java.

• We emphasize concepts for developing good software.
For example, abstraction and testing play an impor-
tant role in both parts of the course. These concepts
are independent of a given programming language, and
can thus be illustrated by contrasting the differences
and similarities between both programming languages.

• Finally, most other courses at our university are based
on Java, and their educators expect the students to be
familiar with Java by the end of CS 1. Thus, we can-
not simply spend the complete first term on functional
programming, as some other universities do.

4.2 Java GUI Programming Inside CS 1
GUI programming also plays a role in our CS 1 course.

GUI programming is important for whatever students plan
to do later in their studies. For example, many of the Bach-
elor Theses written by our students will also require them
to implement a GUI front-end for their project. However,
there is no other course in our undergraduate study program
that actually teaches GUI programming.

To introduce GUI programming, we use the library of the
ACM Java Task Force [5] for some homework assignments.
This library is used for several smaller assignments, such as
drawing a stock exchange diagram, and to enable students
to use interaction with the user from the first week of the
Java lecture. We also use it as a motivation for how to model
inheritance, although our model differs from the one in [5].

GUI programming using Java Swing also plays a promi-
nent role in our key “unusual feature”, the lab assignment
described in Section 4.3.

171

4.3 Final Lab: Game Programming
The last unusual element of our CS 1 course is the final

lab. This lab was first introduced in winter 1995. We have
coordinated the lab since winter 2008. The lab always starts
some time after the last lecture and lasts for two weeks, and
is considered as a full-time job. The lab consists of a common
task for all participants that has to be implemented by teams
of four students within the two weeks.

Our lab has changed both the organizational approach and
the contents of the lab. We provide the task description—
about 20 pages—four weeks before the lab officially starts,
to give students a chance to become familiar with the task
and get all questions answered. Of course, many students
also use this time phase to start working on the lab, which
we encourage.

The goal of our lab is to implement a fully working com-
puter game, based on a small framework we provide. This
framework can essentially place images in a grid and notify
other components about keyboard or mouse events, in the
latter case also indicating which element was clicked on. In
winter 2008, the task was to implement a running version
of the classic game Sokoban. In summer 2009, the chosen
game was Shisen, a 2D variation of the classic board game
MahJong, perhaps better known to computer game players
as Shanghai (see Figure 2). In the winter 2009 term, our
students implemented Plumber1.

Figure 2: Example Student Lab Result, Summer
2009

The final lab task is always split into several subtasks
grouped in one base and three extension “levels”. Each sub-
task gives a certain number of points if it is successfully
solved. The “levels” only serve as a general guidance, to
prevent students from getting lost in the details.

Towards the end of the two weeks, each lab group submits
their solution and has the project graded. Grading consists
of a set of JUnit-based tests run by the group’s tutor, a“live”
test where the tutor plays the submitted game, a (quick)
inspection of the code, and questions about the code and its
structure that the tutor can direct at specific students. We
instruct our students that they work as a group and have
to pass this test as a group. Therefore, they should make

1e.g., http://www.funny-games.biz/the-plumber.html

sure that all participants understand all parts of the code
(nearly) equally well, as it is solely the tutor’s choice who
will answer a given question.

The final number of points of the lab are determined based
on the subtasks the group has solved, adjusted by the degree
of correctness of their implementation, as well as by the ques-
tion and answer session. Groups can also do more than we
have demanded by providing bonus features or other “good-
ies”. For example, the GUI by the group shown in Figure 2
was not based on our framework, but completely rewritten.
Up to 45 points are possible for (outrageous) extra materi-
als. For example, two groups in winter 2008 implemented
an OpenGL-based 3D version of Sokoban, and were accord-
ingly rewarded with extra points. (Note that we do not even
mention OpenGL in our course!)

In winter 2008 and summer 2009, the lab was a part of
the final exam and thus directly counted for the final grade.
Starting in winter 2009, the lab will only be part of the
exam qualification. Over the last two terms, the drop-out
rate for both terms was far less than 10%, and all students
who showed up for the final test of the lab passed this with
at least the required 50 points.

As indicated above, the switch from other lab topics to
computer games has resulted in high motivation and enor-
mous efforts by our students, leading to many very good
solutions. We have also created a Hall of Fame for both
terms, presenting the best implementations of both terms.

In winter 2008, the average number of points reached in
the lab (out of 100, and up to 145 including bonus points)
was 97.15, in summer 2009, it was 92.3. In winter 2009—
when it was not part of the exam—, it was 93.66.

5. EVALUATION RESULTS
What do students think about our lecture? The shortest

answer is that they obviously like it, as the summer 2009
lecture was awarded the CS department students’ prize of
“best lecture”, and also received the university-wide“Best E-
Teaching Award”, as determined by a student jury based on
nominations by our students. The educator was also nomi-
nated for the state-wide award for excellence in teaching.

The lecture was also formally evaluated by the CS depart-
ment and our university’s e-learning center. In the follow-
ing, a Likert-scale from 1 (very good) to 5 (very bad) was
used. In the evaluation by the CS department in winter 2008
(“W”), 125 students submitted a (partially incomplete) sur-
vey, while 37 students submitted a survey in summer 2009
(“S”). The total grade for the lecture was 1.79 (W) and 1.28
(S). 92% (W) / 89% (S) would recommend the lecture to
a friend. The most common statements in the handwritten
notes was praise for the online platform, the speed of replies,
and the time and effort invested by the educator.

Our exam results cannot be directly compared to those of
previous iterations. We have slightly reduced the duration
of the “Scheme” part. We have also introduced Moodle and
changed the focus of the final lab to game programming.
These changes may also impact the final result of the exams,
as shown in Table 2. The difficulty level of all exams was
supposed to be similar, to the extent that this is possible.
Note that the large number of failed students in winter 2008
was partially due the fact that those students could egalize a
bad exam with their final lab points—where, as mentioned
in Section 4.3, the average number of points reached was
97.15. Only 151 (26.9%) students actually failed the exam.

172

Term Points req. Failed students

Winter 2005 40 50.9% (148)
Winter 2006 45 36.7% (29)
Summer 2007 45 42.9% (12)
Winter 2007 45 26.3% (99)
Summer 2008 42 54.3% (25)
Winter 2008 50 38.8% (269; see below)
Summer 2009 50 26.1% (30)
Winter 2009 50 29.3% (146)

Table 2: Exam results in CS 1 per term and required
number of points. Our CS 1 lectures as described in
this paper are put in italics. Note that the number
of students participating in the exams differs signif-
icantly between terms.

Similarly, 146 out of 498 students did not reach the 50 points
in the winter 2009 exam (29.3%), but after adding the bonus
points, only 107 (21.4%) actually failed the exam.

The evaluation of the e-learning center focused on the use
of e-learning, and thus especially on the use of the LMS
and the lecture recordings. The (lengthy) survey was filled
out by 82 students. 77% stated that their learning was more
successful due to using the e-learning offers, and 74% agreed
that the amount of time invested in the e-learning tool paid
off well in learning outcomes. The most commonly lauded
elements were the forum (graded with 1 or 2 out of 5 by 68%
and 21%, respectively), lecture recordings (51%/27%), and
lecture materials (62%/26%).

More than 75% of all students felt that they could always
access the learning materials, and were able to learn wher-
ever they wanted to. 65%/20% also (strongly) agreed that
the portal supported the communication with the educators.
Finally, 74% strongly agreed that they were satisfied with
the support by the educators, and a further 14% agreed. 9%
were undecided, and only 4% were somewhat dissatisfied.

The following data comes from a feedback inside the learn-
ing platform. We focus only on the percentage of the 158
participating students who ranked a given feature as “good”
or “very good”. The didactical concept of the “Scheme” part
(Section 4.1) was appreciated by 72.79%, and its concrete re-
alization by 71.52%. The exercises were praised by 78.48%,
and the tool support (DrScheme) by 67.08%.

The learning portal was accessed between three times a
week up to every working day by 48.83%, and at least daily
by another 36.07% of our students. The availability of learn-
ing materials including the modularized lecture recordings
(Section 3.3) (91.1%), forums (86.71%) and polls (74.05%)
received very good grades. We also asked students which
features we should keep if we could support less features
(multiple choices were possible). The most relevant elements
were learning materials (89.24%), assignments (86.71%), fo-
rums (86.71%), group selection (53.80%), quizzes (51.90%)
and the database of example code from the slides (45.57%).
In fact, the main criticism—voiced by only five students—
was that the portal “offered too much”, although elements
outside the current week could also be hidden.

Table 5 summarizes selected results from the evaluation
of our final lab in winter 2009. The survey was filled out by
71 students.

Item ++ +
I was having fun in the lab 21.27% 49.28%
Extension levels are helpful 47.89% 33.80%
How appropriate was the difficulty? 52.11% 36.62%
Detailed points for each subtask 60.56% 28.17%
I am proud of my achievements 23.94% 32.29%
Now better in Java than before lab 40.85% 42.25%
Was game programming motivating? 61.97% 30.99%

Table 3: Students agreeing or agreeing strongly with
evaluation items for the lab, where ++ and + repre-
sent strong agreement and agreement, respectively.

6. SUMMARY AND CONCLUSIONS
We have presented the structure of our CS1 course that

starts with the How to Design Programs teaching languages,
followed by Java and a final lab on game programming. Our
course certainly demands a lot from our students—but also
gives them many learning opportunities and much support.

As the evaluation results show, students enjoy and appre-
ciate the course. Their learning outcomes also show that
they have learned a lot. The learning platform as outlined
in Section 3.2 also received a very good evaluation. We hope
that other educators will consider similar“unusual”elements
in their courses, and encourage interested educators to con-
tact the first author for in-depth discussion.

7. REFERENCES
[1] Jason Cole and Helen Foster. Using Moodle: Teaching

with the Popular Open Source Course Management
System. O’Reilly, 2007.

[2] Jeffrey Edgington. Teaching and viewing recursion as
delegation. J. Comput. Small Coll., 23(1):241–246,
2007.

[3] Matthias Felleisen, Robert Bruce Findler, Matthew
Flatt, and Shriram Krishnamurthi. How to Design
Programs: An Introduction to Programming and
Computing. MIT Press, 2nd edition, 2001.

[4] Michael Goldwasser and David Letscher. Teaching
strategies for reinforcing structural recursion with lists.
In OOPSLA ’07: Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming
systems and applications companion, pages 889–896,
New York, NY, USA, 2007. ACM.

[5] Eric Roberts, Kim Bruce, Robb Cutler, James Cross,
Scott Grissom, Karl Klee, Susan Rodger, Fran Trees,
Ian Utting, and Frank Yellin. ACM Java Task Force
support library. WWW: http://jtf.acm.org/, 2006.

[6] Lon A. Smith and Elizabeth Turner Smith. Using
Camtasia to develop and enhance online learning:
tutorial presentation. J. Comput. Small Coll.,
22(5):121–122, 2007.

[7] Ben Stephenson. Using graphical examples to motivate
the study of recursion. J. Comput. Small Coll.,
25(1):42–50, 2009.

173

