
On the anonymity of privacy-preserving many-to-many communication in the

presence of node churn and attacks

Jörg Dauberta,b and Tim Grubeb and Max Muehlhaeuserb and Mathias Fischerc
aAGT International, Germany

bTelecooperation Group, Technische Universität Darmstadt / CASED, Germany
{daubert, tim.grube, max}@tk.informatik.tu-darmstadt.de

cNetworking and Security Group, International Computer Science Institute, Berkeley, USA
mfischer@icsi.berkeley.edu

Abstract—Anonymity can protect from political repression
in Online Social Networks (OSNs) as well as from undesired
profiling, e.g., by advertisement companies, in todays’ Internet.
P2P-based anonymous publish-subscribe (pub-sub) is a highly-
scalable approach to protect anonymity while enabling efficient
many-to-many communication between services and users. How-
ever, churn and the resulting overlay degradation in P2P-based
pub-sub systems require repairs and optimizations to maintain
anonymity and efficiency. This paper analyzes attacks on such
repair and optimization functions to disclose participants. For
that, we apply a strong attacker model that combines large-
scale traffic monitoring with malicious insiders. Furthermore,
we propose and evaluate heuristic countermeasures. Our findings
indicate that some attacks can be mitigated at reasonable costs.
However, churn seems to remain a major threat to anonymity.

Index Terms—Anonymity, Overlay, Attack, Optimization

I. INTRODUCTION

Pub-sub is a distributed programming paradigm that en-
ables many-to-many communication. Such communication is
a typical use case of P2P-based systems, where participants
form a loosely coupled group based upon interests, and all of
them communicate with each other. For instance, hashtags in
the OSN Twitter resemble the pub-sub paradigm. Participants
embed hashtags in their published tweets while participants
also receive tweet streams given a hashtag. Pub-sub connects
such producers and consumers of information without requir-
ing them to know each other. Information is routed according
to interests (subscriptions), which are expressed by consumers
(subscribers) along topics. Producers (publishers) annotate
their notifications with such topics, and hand them over to
brokers (forwarders), which then disseminate the notifications
to the subscribers. In a P2P pub-sub system, every node can
take over all roles.

Popular Online Social Networks (OSNs), e.g., Twitter and
Facebook, play an important role in today’s dissemination of
information. In particular, the dissemination of time-critical
information, the publication of news under political repression,
and censorship emphasize the importance of OSNs. How-
ever, OSNs leak private information, e.g., social relations,
personal preferences and communication behavior, to OSN
operators, the advertisement industry, criminals, and govern-
ments. Hence, privacy-preserving OSNs and middleware to

build such systems have emerged. Such privacy-preserving
solutions attempt to protect the confidentiality of information
and the anonymity of participants at the same time.

Anonymous pub-sub systems [1] apply techniques from
Tor [2], MIXnets, and Crowds [3] directly to the domain
of pub-sub. Information is not only encrypted to protect
confidentiality, but also relayed with no IDs attached to protect
anonymity by increasing the size of anonymity sets. However,
anonymization-only services such as Tor and MIXnets do not
adapt well to the many-2-many communication in OSNs. Due
to their semi-central nature, they can be easily blocked [4].

Anonymous P2P-based pub-sub [1] extends secure pub-sub
[5] that only provides confidentiality by anonymity and does
not presume a (semi-) central infrastructure. P2P solutions
suffer from node churn—nodes joining and leaving overlays
or the whole system—and maintain low message overhead by
optimizing the topology of overlays [6]. Such mechanisms can
be exploited by anonymity attackers, too, to reduce anonymity
sets.

The analysis of anonymity is mainly based on two major
attacker models: a global observer, i.e., a passively monitoring
attacker with global knowledge, or a single malicious insider.
However, collusion of multiple malicious insiders and the
combination of both attacker models should be considered
as well [7]. Furthermore, anonymous P2P pub-sub requires
periodic overlay optimizations, such as position changes for
anonymity protection, optimizations as a result of node churn,
and to optimize the overlay for an efficient message delivery.
However, such optimizations have not been analyzed regarding
their impact on the resulting anonymity protection so far.

In this paper, we use a powerful combination of global ob-
server attacker and malicious insider to analyze the anonymity
properties of a pub-sub system. This attacker abuses the two
overlay optimizations cover traffic and position changes, as
well as churn, to break anonymity of subscribers. Further-
more, we propose countermeasures against such attacks based
upon opportunistic node behavior. We evaluate attacks and
countermeasures via extensive real-world simulations of the
anonymous pub-sub system used in [7] and earlier work.

Our results indicate that the combined attacker can suc-
cessfully de-anonymize subscribers in anonymous P2P-based

pub-sub. However, our proposed countermeasures can mitigate
or even prevent these kinds of attacks completely at low
additional signaling overhead.

The remainder of this paper is structured as follows: Sec-
tion II summarizes notation, construction, and optimization of
anonymous pub-sub. Section III explains attacks on these op-
timizations, and proposes countermeasures against the attacks.
Section IV summarizes our evaluation of the proposed attacks
and countermeasures. Section V summarizes this paper.

II. ANONYMOUS P2P PUBLISH-SUBSCRIBE

This section provides a formal model for anonymous
pub-sub systems, proposes our anonymity attacker model,
and introduces our construction for anonymous unstructured
P2P pub-sub. Furthermore, this section discusses the overlay
optimizations cover traffic and position changes as well as the
impact of churn.

A. System model

A distributed pub-sub system is realized on top of a basic
overlay, denoted as a graph G = (V,E) of nodes V with edges
E ⊂ V × V . An attribute overlay Ma = (Va, Ea) distributes
messages for an attribute a ∈ A (interests). The participants
Va = Pa ∪ Sa ∪ Fa in Ma consists of publishers Pa, which
disseminate new information for interest a, and subscribers
Sa, which are interested in information about a. The nodes
Fa are not interested in information about a but rather another
attribute a′. Thus, they contribute to the attribute overlay by
relaying messages about a.

Within an overlay Ma, messages are disseminated over
direct connections Ea = {(n1, n2) ∈ E : n1, n2 ∈ Va}.
Using ∀p∈Pa ∀s∈Sa : patha(p, s) one obtains all traversed
nodes on a shortest path between publisher p and subscriber
s in Ma. The set N(v) = {w | ∀(v, w) ∈ E} contains the
neighbors of v in V ; the set Na(v) = {w | ∀(v, w) ∈ Ea}
contains the neighbors of v in Ma. N+

a (v) denotes the
overlay predecessors and N−a (v) the successors regarding
the notification flow. The time t ∈ T : T = {1, 2, . . . }
indicates snapshots, e.g., Gt and Sta. Every system snapshot
is represented by an increment of t.

A pub-sub system is inherently dynamic. Node churn ϕ ∈
[0, 1] denotes the ratio of nodes that are subject to churn during
a time interval [ti, ti+1]. Churn occurs in two characteristics:
first, nodes join and leave G, which also affect overlays Ma.
Second, subscribers and publishers join and leave attribute
overlays Ma but not G. Nodes send a subscription message
(msub) to join an attribute overlay. Advertisement messages
madv from publishers indicate the availability of overlays. To
leave an attribute overlay, they have to send an unsubscription
(munsub) or unadvertisement (munadv), depending on their
role in the attribute overlay. When nodes fail, their neighbors
act as if they received an unsubscription / unadvertise message
from that node.

B. Attacker model

The anonymity attacker attempts to reveal all nodes sub-
scribing to or publishing to an attribute, i.e., given a, identify
Pa and Sa. To measure the attack success via a set-based
metric [7], the attacker proposes a candidate set S ′a (and
P ′a respectively) with likely subscribers. This is particularly
difficult as subscribers may also have the role of a forwarder,
i.e., |Sa∩Fa| ≥ 0. With a perfect attack, the attacker achieves
S ′a = Sa; with perfect anonymity Va = S ′a.

Various capability models for attackers have been proposed:
a global attacker that observes all communication, as well as
malicious insiders [2], [3]. We use a strong attacker, whose
capabilities combine global observer and malicious insider
[7]. The global observer provides the topology G and the
attribute overlaysMa by tracing message flows. Furthermore,
the attacker estimates sizes of the publisher and subscriber sets
|Pa|′ and |Sa|′. The active insiders send, receive, and decipher
messages under the coordination of the global observer. For
instance, to identify subscribers, we also assume that the
active insider possesses the keys of a publisher to send valid
messages on behalf of a publisher to the subscribers. This
attacker model is very strong, but we believe that compromised
devices (active insider) and large-scale traffic analysis (global
passive attacker) have to be indeed considered with respect to
the Snowden/NSA leaks.

The success of the attacker can be measured by information
gain gt = Ht−1−Ht that expresses what the attacker “learned”
during an attack [7]. To calculate the gain, we establish
a probability distribution v at every time t containing the
probability of every candidate node v ∈ V being a subscriber
in Sa. Then, we calculate the difference for all nodes compared
to the previous time t − 1 as given by Equation (1). Based
on these differences, we calculate the Shannon entropy via
Equation (2). The difference of this entropy between time t
and t− 1 denotes the gain.

pdiff (vi, t) = 1− |vt−1[vi]− vt[vi]| (1)

Ht = −
∑

vi∈|Va|

pdiff (vi, t) ∗ log2(pdiff (vi, t)) (2)

C. Anonymous publish-subscribe overlay construction

To establish the attribute overlay Ma, publishers in Pa

distribute routing information on a by flooding advertisement
madv in G. Interested subscribers Sa reply via subscriptions
msub. Nodes acting as forwarders Fa ensure the connection
by forwarding messages. Thus, all three sets together form
Ma through which publishers distribute notifications mnotif

[7]. As a result, message dissemination in Ma causes low
message overhead and low latency.

Other constructions such as [1] flood subscriptions rather
than advertisements, but result in similar overlay networks
when distributing notifications.

Subscribers and publishers leave overlays by sending
munsub and munadv messages. Forwarders f ∈ Fa act on

behalf of publishers and subscriber and thus use the same
messages. A subscriber s may need to reconnect to Ma if s
lost its connection via a f ∈ Ma. Hence, repair mechanisms
have to be performed, e.g., gossiping with remaining neighbors
of s or localized flooding by neighbors of f .

D. Anonymity-enhancing overlay optimizations

After their initial construction, churn degrades requirements
such as minimal notification delivery delay. Therefore, op-
timizations to the overlay are required to maintain these
requirements. Furthermore, anonymity may not be reached via
the initial overlay construction, and thus has to be established
via overlay optimization as well. We discuss two of those:

a) Cover traffic: Overlay topologies expose properties
[8] that can be exploited by an anonymity attacker, e.g., to
reveal leaf nodes as subscribers. Cover traffic can eliminate
topological properties. MIX networks eliminate such proper-
ties, but are not applicable in low-latency systems and cause
signalling overhead. Receiver-bound cover traffic [9] protects
receivers by relaying messages to further nodes, concealing
their role as original receiver. Thus, no waiting times are
required.

We adapt this concept as an overlay optimization. Sub-
scribers without “outgoing” overlay neighbors in Ma select
neighbors from G, and add them to the attribute overlay.
Formally, such a subscriber s has one neighbor in Ma but
more edges in G (Equation (3)). The subscriber then selects
one or more nodes v that would receive notifications via s if
they were subscribers. Constraint (4) formalizes this condition.

s ∈ Sa : |Na(s)| = 1 ∧ |N(s)| > 1 (3)
v ∈ V \ Va ∧ v ∈ N(s) ∧ patha(p, v) = (patha(p, s), v) (4)

A node v must not be part in the attribute overlay, v must
be a neighbor of s, and s must be the direct predecessor of v
on the shortest path from a publisher p to v. The subscriber s
cannot assess the latter condition with only local knowledge
and thus has to guess. The subscriber s then adds node v to
the overlay Ma, e.g., by informing v to subscribe to a. As
a result, s is no longer “exposed as a leaf” on the one hand,
and the potential anonymity set grows as Va—the number of
nodes in the overlay—grows.

b) Position changes: While cover traffic improves
anonymity, it does not change the inner overlay structure.
Position changes, usually used to minimize the delivery delay
of notifications [10], can solve this issue. A random position
change can be realized by adjacent nodes in Ma switching
their positions. That is, nodes w, x switch positions, e.g., the
path (v, w, x, y) becomes (v, x, w, y).

The topology now does not expose undesired properties as
every node in Va can take any position in Ma. However,
insider attacks abusing this mechanism have to be identified
and analyzed.

E. Churn induced overlay changes

Churn adds dynamics to a P2P system by participants that
join and leave the system. While the accurate characterization
of churn in a system is a challenge [6], the mere dynamics
exhibit information that can be abused by an attacker.

This paper distinguishes two types of churn: churn in
the basic overlay, and churn in the attribute overlay. While
nodes leaving the attribute overlay Ma have no immediate
impact on the topology—a subscriber from Sa just becomes
a forwarder from Fa—joining Ma may cause subsequent
overlay optimizations. Furthermore, leaving the basic overlay
G may even require overlay repairs as new paths have to be
formed to connect Ma.

III. ANONYMITY ATTACKS AND COUNTERMEASURES

This section structures our anonymity attacker model ac-
cording to its capabilities and proposes four attacks to reveal
anonymity. We propose three countermeasures to prevent or
at least mitigate these attacks.

A. Attack based on churn

The global observer monitors network links and thus ob-
serves churn, e.g., when a node joins or leaves the basic
overlay G and the attribute overlay Ma simultaneously.

The global observer simply has to observe changes in the
communication patterns before and after node churn. In case
communication paths change as a result of node churn, this
information can be used to classify nodes from Va to be
forwarders in Fa. Similar attacks on other anonymization
services have been reported as intersection attack [11].

pf1

f2

s2

s1

(a) s2 joins late, ideally s1 would
be connected via dotted arc

f1 p s2

s1 s3

(b) s1 and s3 leave, dotted edges
disappear

Fig. 1: Effects of churn.

Fig. 1a depicts the case of the shaded node s2 joining at time
t+1. Initially, only s1 is connected with p. Thus, Sta = {s1},
F t

a = {f1, f2}, and patht
a(p, s1) = (p, f1, f2, s1) as s2 has

not joined at time t yet. Once s2 joins, it directly connects
with p as patht+1

a (p, s2) = (p, s2). However, patht+1
a (p, s1)

should now become (p, s2, s1) rather than (p, f1, f2, s1).
As a result, both subscribers s1, s2 are exposed as leaf nodes

at t+1, whereas ideally only s1 should be exposed. Moreover,
s2 may use cover traffic (cf. Section II-D) and select s1 for
that, which is valid according to Constraint (4). However, s1
then receives duplicate messages, indicating the use of cover
traffic to the global observer.

Fig. 1b depicts the case of the shaded nodes s1, s3 leaving
at t+ 1. As s1 leaves Ma, f1 may also leave Ma as it is no
longer required to relay message at t+1. This “ripple effect”
allows the global observer to reason that f1 ∈ Fa and f1 /∈ Sa.

Likewise, when s3 leaves Ma at t+1, s2 will remain in Ma

as it is interested in the notifications for a. Hence, the global
observer reasons that s2 ∈ Sa and s2 /∈ Fa.

In summary, node churn exposes subscribers over time.
Furthermore, churn affects the overlay topology, which in
consequence has impacts on the overlay optimization that
might lead to further exposure. Thus, the effects of churn must
be carefully considered when introducing new anonymity-
enhancing overlay modifications.

B. Attack on cover traffic

Cover traffic is susceptible to attacks when used in combina-
tion with other overlay optimizations such as position changes.
An active insider can stimulate such optimizations to cause
benign nodes to react and thus to leak valuable information to
the global observer.

p f1

s1f2

(a) Initial overlay

p s1 f2

f1

(b) s1, f1 changed positions

Fig. 2: Cover traffic under position changes.

Cover traffic is initiated by a node s1 ∈Ma that intents to
cover itself by starting to relay messages to node f2. However,
this might create a topological anomaly when using additional
position changes. When two nodes, f1, s1 change positions, s1
keeps f2 as cover node, as f2 is not part ofMa. This exchange
of neighbors looks abnormal from the global observer’s point
of view.

The global observer monitors such abnormal exchanges
(Fig. 2a). At time t, f2 is cover node of s1, f1 intents to
change positions with s1. Fig. 2b: at time t + 1, f1 changed
positions with s. Hence, the global observer reasons that s1 is
covering itself, and that f2 is a cover node. The global observer
therefore assigns these nodes to S ′a and F ′a respectively.

The malicious insider can extend this attack by forcing
position changes, i.e., the active insider takes position of node
f1 (cf. Fig. 2a) to force s1 to change the position with it. Using
this method, the malicious insider targets uncertain nodes, i.e.,
nodes that have not been assigned to S ′a and F ′a, and cause
observable activity in dormant overlays.

In summary, while cover traffic is an optimization to protect
anonymity, it can cause the opposite effect in combination with
other overlay optimization.

C. Attack via overplay spamming

Overlay optimizations such as cover traffic and position
changes are supposed to prevent the global observer from
observing properties of the attribute overlay. However, in
combination with a malicious insider, the overlay can be
spammed with messages. This allows the global observer to
observe overlay optimizations as each spammed message that
is transmitted within an attribute overlay provides a topology

snapshot. As a result, the global observer can reenact these
optimizations and identify exposed leaf nodes (subscribers).

To observe position changes, the malicious insider must
send messages faster than the duration in between position
changes. Following the Nyqvist-Shannon sampling theorem,
the malicious insider must a least keep a message rate as
given by rate in Equation (5) that adapts the theorem to the
position change mechanism. The equation assumes that control
messages for position changes are embedded in covert traffic,
e.g., heartbeats, that are sent for instance every three seconds.
For that, heartbeats must be padded and encrypted (content
remains covert) to be able to hold control messages.

rate =
1

2× 4× 3s
; changesmax =

|V |
2×N(v)avg − 1

(5)

Changing positions of two nodes requires at least four non-
concurrent messages, two messages for a two-phase commit
protocol and two messages for the neighbor handover. The
symbol changesmax in Equation (5) provides an approxima-
tion for the number of simultaneous position changes. To
achieve this message rate, the active insider has to take over
the position of a publisher and send notifications. To avoid
the detection of overlay spamming, the insider may operate
several malicious nodes and spread the burden among these
nodes to reduce the sending rate per node.

D. Node cornering attack

In the node cornering attack, the malicious insider discon-
nects an overlay node from the overlay. The global observer
then observers the behavior of this node. If the nodes re-
establishes its connection to the overlay via an alternate path,
it is a subscriber interested in notifications from this overlay.
If not, the node is a forwarder.

p A

f s

(a) Change

p f

A s

(b) Disconnect

p f

A s

?

(c) Observe

Fig. 3: Corner attack: A changes into a position close to s,
disconnects s, and then observes s.

To perform this attack, the malicious insider first has to
“corner” the target node, then disconnect it from the overlay.
Fig. 3 illustrates this approach. Fig. 3a shows the initial setup.
To analyze s, malicious insider A first has to get close to s.
For that, A uses the position change method. Fig. 3b shows
that A has trapped s in a corner and interrupts the overlay
connection. Fig. 3c shows now the global observer just need
to observe the connection between f and s. If f starts to relay
notifications to s, he can be sure that s is a subscriber. The
Procedure cornerAttack shows the corner attack as recursive
algorithm. However, every corner attack requires time for the
malicious insider to get into position.

Procedure cornerAttack(N+
a (v), N−a (v))

for w ∈ N−
a (v) do

if N−
a (w) = ∅ then
disconnect(w) // destroy edge (v,w);
if observeReconnect(w) // via global observer then

v[w] ← 1 // definitive subscribe;

else
v[w] ← 0 // definitive not a subscriber;

normalize(v) // v always sums up to 1;

else
changePosition(v,w) // v becomes w and vice versa;
cornerAttack(N+

a (w), N−
a (w));

E. Countermeasures

We propose two countermeasures to mitigate the introduced
attack schemes. First, opportunistic node behavior (ONB) and
second, publisher slow start (PSS).

With ONB, cover nodes should join an attribute overlay
via a subscription and act like a normal overlay member
(ONB1). Furthermore, nodes with low traffic join random
attribute overlays to generate additional cover traffic (ONB2).

With PSS, publishers should wait before sending notifica-
tions after an attribute overlay has been established. Then,
overlay optimization can be performed without the global
observer being able to observe the initial notification flow.

ONB1 differs from cover nodes. With cover nodes, the
node s covering itself relays notifications to the cover node.
This approach has the drawback that s may forward to an
unstable cover node f . The cover node may not perform all
overlay optimizations. This can be exploited via one of the
introduced attacks.

With ONB1, s asks f to join the overlay. If f is not suitable,
e.g., s is not in patha(p, f), f ignores the request rendering
the suboptimal path attack ineffective. If f is suitable, f
subscribes to s and thus joins the set Sa from the global
observrs perspective and behaves normally, e.g., also follows
position changes and attempts to reconnect after an overlay
disconnect. That renders the node cornering attack ineffective.
However, the additional round-trip requires time and may thus
still expose s during that duration. Furthermore, also f behaves
like a member Sa, it is actually part of Fa as it does not
possess necessary secrets to decipher messages for Sa.

To mitigate this drawback, nodes v /∈ Va may opportunis-
tically subscribe to a (ONB2). Therefore, s might not be
exposed in the first place. Furthermore, the ratio |Sa|/|Va|
decreases as Fa and thus Va grow. Thus, the set Va exposes
less statistical information about Sa.

With PSS, publishers Pa wait after the establishment of the
attribute overlay for overlay optimizations to take place before
sending notifications. This behavior ensures that the global
observer cannot observe or reverse the initial overlay topology
M0

a. However, as a malicious publisher may not comply with
this countermeasure, forwarders have to suppress notifications
during that duration as well.

TABLE I: Effectiveness of countermeasures against attacks.

Countermeasures

Attacks ONB1 ONB2 PSS

On churn 3 ? 7
On cover traffic 3 ? 7
Overlay spamming 7 ? 3
Node cornering 3 3 7

twait ≈ 2× |patha(p, s)|avg × 12s (6)

This duration can be estimated by nodes, e.g., Equation (6)
approximates the duration for the position change overlay
optimization (4 messages times 3s for the heartbeat interval
each). In addition, a rate limit must be enforced by forwarders
to prevent publishers from sending notifications at optimal
sampling rate (cf. Equation (5)).

The presented countermeasures address the attacks as stated
by Table I. In particular, no single countermeasure protects
against all presented attack. The ONB is a probabilistic
countermeasure. Thus, its success depends upon the overlay
topology as well as parametrization µ. ONB does not introduce
an additional vulnerability. However, a malicious publisher
may completely prevent PSS by ignoring the waiting time.
The following section elaborates how well the presented at-
tacks disclose participants and how good the countermeasures
protect against these attacks via an extensive simulation.

IV. EVALUATION

This section analyzes the proposed attacks and countermea-
sures in a realistic simulation setup. For that, we answer the
question regarding the attackers gain from observing churn as
well as cover traffic; how much ONB mitigates these attacks;
what waiting time for PSS works best to counter the attacker;
how much the attacker gains via the node cornering attack.

A. Simulation setup

To evaluate attacks and countermeasures, we use the OM-
NeT++1 simulation model from [7]. The anonymous pub-sub
application is implemented based upon UDP. All malicious
insiders and the global observer share joint data via an out-
of-band channel. This data contains the probability distribu-
tion v over all nodes Va as shown in Equation (1). The
simulation is build upon a fixed basic overlay. On top the
anonymous pub-sub system constructs attribute overlays. The
generation follows the random graph model with a size of
|V | ∈ [100, 1000] nodes and a varying ratio of edges to ensure
a stable neighborhood size for increasing |V |. Thus, we obtain
an average diameter in Ma of 6.51 (|V | = 100) up to 17.35
(|V | = 1000). We designate |Sa|/|V | = 0.1 of these nodes
as subscribers Sa. Furthermore, we use the probability µ to
indicate the likelihood of choosing a neighbor as cover node.
The set Ca contains the opportunistic cover nodes for ONB.

1http://www.omnetpp.org

TABLE II: Simulation parameters.

Parameters and default values
|V | ∈ [100, 1000] // size of the basic overlay
|Sa|/|V | = 0.1 // ratio of subscribers
µ = 0.4 // cover neighbor probability
|Ca|/|V | ∈ [0, 0.5] // ratio of ONB2 nodes
ϕ ∈ {0.05, 0.1, 0.2} // ratio of node churn
runs ∈ {200, 300} // repetitions per setup

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 250 500 750 1000
|V |

g

ϕ = 0.05 ϕ = 0.1 ϕ = 0.2

Fig. 4: Influence of churn on the attackers’ information gain.

We repeat every experiment runs ∈ {200, 300} times and
calculate the 95% confidence intervals. Table II summarizes
the parameters.

For the attacker, we assume that the global observer knows
the topology of the basic overlay G. Furthermore, the global
observer provides background information in terms of the
subscriber ratio |Sa|/|V |. The malicious insider contributes
secrets known to a publisher from Pa. The attacker attempts
to expose the set of subscribers Sa. To measure success, we
use the normalized information gain per subscriber g (cf.
Section II-B) as metric.

B. Impact of churn

The effects of churn allow the global observer to distinguish
subscribers from forwarders. However, it remains unclear how
much the global observer gains from churn.

We simulate with the settings from Table II and vary the
number of nodes |V | as well as the ratio of nodes involved in
churn ϕ ∈ {0.05, 0.1, 0.2} and measure g.

We expect a linear correlation of g with ϕ as the global
observer can observe more overlay repairs with increasing ϕ.
Furthermore, we expect an increase of g with |V | due to longer
path lengths in the overlay and thus more nodes affected by
churn.

Fig. 4 depicts the results of the simulation. As expected, g
increases with ϕ for small amounts of nodes. However, the
global observer does not seem to benefit from high churn for
higher number of nodes—the results for ϕ = 0.05 and ϕ =
0.2 become almost indistinguishable. This is because more
subscribers become part of every patha(p, s). These nodes
cause the path to remain stable (persists for many snapshots
T). Hence, the global observer identifies less forwarders.

In summary, the simulation results indicate that churn poses
a high risk to nodes being de-anonymized.

C. Cover nodes under overlay optimizations

Cover traffic can be observed by the global observer when
overlay optimizations take place. ONB1 and ONB2 can miti-
gate this problem.

0.0

0.2

0.4

0.6

0 250 500 750 1000
|V |

g

|Ca|/|V | = 0.0 |Ca|/|V | = 0.3 |Ca|/|V | = 0.5

Fig. 5: Overlay optimizations with cover traffic and ONB.

We simulate with the same parameters as before, and set the
probability of choosing a neighbor for cover traffic to µ = 0.4
for ONB1. We variate the number of nodes as well as the ratio
of opportunistic cover subscribers |Ca|/|V | ∈ {0, 0.3, 0.5},
and measure g.

We expect a linear correlation between |Ca|/|V | and g as it
becomes difficult for the attacker with increasing |Ca|/|V | to
identify subscribers because less overlay nodes are forwarders.
Furthermore, g should reach 0.5 with |Ca| = |Sa| as there are
equally many subscribers and opportunistic cover nodes.

Fig. 5 shows the results of the simulation. As expected,
the attacker achieves high information gain with cover traffic
without ONB2 Likewise, opportunistic cover nodes signifi-
cantly lower the gain. However, the attacker seems to gain
slightly better with high number of nodes. This happens
as |patha(p, s)| increases with higher |V | and thus more
optimization observations per node.

In summary, cover traffic reveals exploitable information
to the attacker during overlay optimizations. Opportunistic
cover nodes (ONB) mitigate this issue. However, a significant
number of opportunistic nodes exceeding the number of real
subscribers is required to achieve good protection.

D. Overlay spamming

With overlay spamming via the malicious insider, the global
observer can observe overlay optimizations and thus eliminate
the protection of position changes. PSS as countermeasure
mitigates this attack, but the waiting time has to be adjusted
correctly.

We use the same parameters as before, and vary the
number of nodes |V |, and thus also the the average path
length |patha(p, s)|avg . We measure the time t[s] it takes
every overlay node in Va to change positions as often as
2× |patha(p, s)|avg with runs = 300. This allows each node
to “travel” from any position inMa to any other position. The
simulation model reflects characteristics of a real distributed
system, e.g., conflicts due to adjacent nodes attempting to
change positions simultaneously. We resolve this issue via
a two-phase commit protocol [12], where nodes commit to
perform a position change before the actual change.

We expect a logarithmic correlation between |V | and t under
the assumption that |patha(p, s)|avg can be approximated with
the height of a tree under the random graph model. Hence,

160

200

240

0 250 500 750 1000
|V |

t[
s]

Fig. 6: Waiting time over graph size for PSS.

0.00

0.05

0.10

250 500 750 1000
|V |

g

µ = 0.2
µ = 0.5
µ = 0.8

Fig. 7: Information gain with corner attack.

an estimation of the waiting time should be possible without
global knowledge of |V |.

Fig. 6 depicts the results of the simulation. The waiting time
quickly converges towards 213.41s. This is more than an ex-
trapolation based upon Equation (6) and the overlay diameter
of 6.51−17.35 (the diameter approximates 2×|path(p, s)|avg).
This happens in particular for small overlays as the two-phase
commit protocol fails more often due to conflicts of parallel
position changes.

In summary, the waiting time can be well estimated. How-
ever, a waiting time of 3-4 minutes may not be always
acceptable. This waiting time can be reduced by increasing
the rate of overlay control messages at the cost of increased
message overhead.

E. Node cornering

With node cornering, the malicious insider exploits the
position changes to explore the overlay guided by the global
observer. The global observer observes the node behavior after
the internal one disconnects them. However, it remains unclear
how many cover nodes the attack can identify.

We use the same parameters as before, vary the number of
nodes |V | as well as µ ∈ [0.2, 0.5, 0.8], and measure g.

We expect an increase of g with µ, as the attacker should
be able to identify more cover nodes. Furthermore, we expect
a slight decrease in g with |V | due to a slower growth of
|patha(p, s)|avg compared to the growth of |V |.

Fig. 7 depicts the results of the simulation. As expected,
the gain increases with µ and drops quickly with increasing
|V |. However, even with high µ, the overall gain for a single
malicious insider remains low compared to other attacks.

In summary, this attack is not effective as a single malicious
insider can only learn when moving into one branch of the
overlay. The malicious insider can only compensate by waiting
for other nodes to initiate position changes and thus “pull”
the malicious insider back again. Alternatively, the malicious
insider could collude. Still, the attack is invasive and could be
detected by collaborating nodes.

V. CONCLUSION

In this paper, we discussed attacks on unstructured anony-
mous pub-sub overlays under churn. We proposed a strong
attacker model that combines a malicious insider and a global
observer to analyze participant anonymity under overlay opti-
mizations and churn. We described attacks and analyzed them
via a realistic simulation model.

Churn causes overlay repairs and thus enables the attacker
to observe the overlay. This observation is powerful for de-
anonymizing subscribers. ONB only partially mitigates this.

Cover traffic is a proven method to protect anonymity.
However, it can also causes anomalies during optimizations.
Observing these anomalies is a strong method to de-anonymize
subscribers. Moreover, ONB which increases signaling over-
head, has only a limited mitigation effect.

Invasive attacker behavior, such as overlay spamming and
node corning, has only minor impact on the attackers success.
Furthermore, such attacks are easy to detect and effective
prevent, e.g., via rate limits and initial delay.

In summary, churn poses a high risk for anonymity and is
hard to mitigate. Future work will focus on attack prevention
methods to counter the effects of churn.

ACKNOWLEDGMENT

This work has been partially funded by IITP grant funded by
the Korean government (MSIP) (No.B0101-15-1292). This work has
been co-funded by the DFG as part of project B.2 within the RTG
2050 “Privacy and Trust for Mobile Users”. This work was supported
by CASED (www.cased.de). The authors would like to thank Roman
Pilipchuk for his support.

REFERENCES

[1] A. Shikfa, M. Önen, and R. Molva, “Privacy and confidentiality in
context-based and epidemic forwarding,” ComCom, vol. 33, no. 13, pp.
1493–1504, 2010.

[2] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in USENIX. USENIX, 2004, pp. 303–320.

[3] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-
tions,” ACM TISSEC, vol. 1, no. 1, pp. 66–92, 1998.

[4] P. Winter and S. Lindskog, “How the great firewall of china is blocking
tor,” in USENIX FOCI Workshop. USENIX, 2012.

[5] C. Raiciu and D. S. Rosenblum, “Enabling confidentiality in content-
based publish/subscribe infrastructures,” in SecureComm. IEEE, 2006,
pp. 1–11.

[6] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in ACM IMC. ACM, 2006, pp. 189–202.

[7] J. Daubert, T. Grube, M. Mühlhäuser, and M. Fischer, “Internal attacks
in anonymous publish-subscribe P2P overlays,” in NetSys. IEEE, 2015,
pp. 1–8.

[8] L. Singh and J. Zhan, “Measuring topological anonymity in social
networks,” in IEEE GrC. IEEE, 2007, pp. 770–774.

[9] N. Mallesh and M. Wright, “Countering statistical disclosure with
receiver-bound cover traffic,” in ESORICS, ser. LNCS, vol. 4734.
Springer, 2007, pp. 547–562.

[10] B. Schiller, S. Roos, A. Höfer, and T. Strufe, “Attack resistant network
embeddings for darknets,” in IEEE SRDS Workshops. IEEE Computer
Society, 2011, pp. 90–95.

[11] J. Raymond, “Traffic analysis: Protocols, attacks, design issues, and open
problems,” in Designing PETs, ser. LNCS, vol. 2009. Springer, 2000,
pp. 10–29.

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

