
Finding Structure in the Unstructured:
Hybrid Feature Set Clustering

for Process Discovery

Alexander Seeliger(B) , Timo Nolle , and Max Mühlhäuser

Telecooperation Lab, Technische Universität Darmstadt, Darmstadt, Germany
{seeliger,nolle,max}@tk.tu-darmstadt.de

Abstract. Process discovery is widely used in business process intelli-
gence to reconstruct process models from event logs recorded by infor-
mation systems. With the increase of complexity and flexibility of pro-
cesses, it is getting more and more challenging for discovery algorithms
to generate accurate and comprehensive models. Trace clustering aims to
overcome this issue by splitting event logs into smaller behavioral similar
sub-logs. From these sub-logs more accurate and comprehensive process
models can be reconstructed. In this paper, we propose a novel clustering
approach that uses frequent itemset mining on the case attributes to also
reveal relationships on the data perspective. Our approach includes this
additional knowledge as well as optimizes the fitness of the underlying
process models of each cluster to generate accurate clustering results.
We compare our method with six other clustering methods and evaluate
our approach using synthetic and real-life event logs.

Keywords: Knowledge discovery · Process discovery
Trace clustering · Process mining · Business process intelligence

1 Introduction

Business process intelligence supports organizations to optimize and improve
their business processes. In particular, process mining [1] helps to understand the
actual use of information systems in various environments. The basis for process
mining are event logs, recorded by process-aware information systems (PAISs),
industrial machines or sensors. Event logs reflect the activities performed by
employees or machines, allowing the analysis of the relationships between activ-
ities. Additionally, the event log may also store much more information, such as
the executor of an activity and the context of the case, such as the vendor, used
material or the customer.

An essential part of process mining is process discovery which is an unsu-
pervised method for reconstructing a process model from an event log. The
challenge is to find a model that accurately matches the recorded observations,
but is also human interpretable. Many business processes in the real world are

c© Springer Nature Switzerland AG 2018
M. Weske et al. (Eds.): BPM 2018, LNCS 11080, pp. 288–304, 2018.
https://doi.org/10.1007/978-3-319-98648-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98648-7_17&domain=pdf
http://orcid.org/0000-0002-0649-6225
http://orcid.org/0000-0001-5114-8636

Finding Structure in the Unstructured 289

often executed in highly flexible environments, such as health care or product
development. Here a dense distribution of cases with a high variety of complex
behavior can be found. In such scenarios, process discovery often produces a
spaghetti-like model which suffers from inaccuracy and high complexity. Fur-
thermore, behavior on other process perspectives (e.g., data attributes) is not
considered which may also be interesting for process analysts. For example, in
an hospital the same admission process may be applied to emergency and non-
emergency patients. Although the sequence of activities may be the same for
both kinds of patients, the underlying process may be different with respect to
resource assignments or activity durations.

Trace clustering tries to overcome these issues by splitting the different
observed behaviors into multiple sub-logs of similar behavior. For each sub-log,
process discovery is then applied separately to retrieve more accurate and human
interpretable process models. However, existing methods either only rely on the
control-flow perspective or ignore the quality of the discovered models. In par-
ticular, including different process perspectives and providing accurate process
models is challenging.

In this paper, we introduce a new clustering method that uses a hybrid fea-
ture set to consider multiple process perspectives and optimizes the fitness of
the underlying process models. Inspired by our previous work [14] in which we
clustered documents together into meaningful groups by combining the docu-
ment content and the user behavior, we transfer the idea to trace clustering in
process mining. Our method considers the control-flow and the data perspective
to extract process behaviors on both views to split the event log into multi-
ple sub-logs. The basic idea is that different process behaviors often depend
on the context of the case, e.g., the product category or the customer. These
differences may only be small on the trace level, but large on the data perspec-
tive. Our clustering approach additionally uses the case attributes to distinguish
between the different process behaviors. We extract frequent itemsets using fre-
quent pattern mining [10] to find common relationships between case attributes
and use them for clustering. Studies have shown that approaches relying solely
on the control-flow are unable to identify different process behaviors adequately
[18]. Furthermore, our method automatically optimizes the fitness of the sub-log
process models, ensuring that the underlying models sufficiently represent the
clustered traces.

In summary, the contributions of this paper are as follows:

1. We provide a hybrid feature set clustering approach that splits event logs into
sub-logs containing similar cases based on multiple perspectives.

2. Our approach automatically adapts to the given event logs and determines the
optimal clustering parameters by applying the particle swarm optimization
algorithm to optimize model fitness.

3. We provide a comprehensive evaluation of six other trace clustering methods
in the domain of business process intelligence.

The paper is structured as follows. First, we introduce related work. Second,
we introduce our method that combines the data and the control-flow perspective

290 A. Seeliger et al.

to generate clusters. Third, we evaluate our method and discuss the results.
Finally, we conclude with a discussion and a short summary.

2 Related Work

Our work is related to trace clustering in process mining, aiming to improve accu-
racy and interpretability of reconstructed process models by separating different
behaviors on different process perspectives into multiple sub-logs. A summary
and an evaluation framework of trace clustering methods are provided in [18].
The authors elaborate a systematic empirical analysis of different techniques and
evaluate their applicability in two scenarios: the identification of different pro-
cesses and the improvement of the understandability of the mined models. We
classify the related work into distance-based and model-based trace clustering.

Distance-based trace clustering such as [4,9,16] use a vector space model on
the event traces to segment the event log into smaller sub-logs. Greco et al. [9] use
significant subsequences of activities and activity transitions to generate clusters
of traces. Similar, Bose et al. [4] propose the use of different sequence similar-
ity measures to find traces with similar behavior with respect to the order of
activities. Alignment-based approaches can also be used for specifying the dif-
ference between traces, as for example presented in [7]. In [16] the use of log
profiles is proposed, allowing to incorporate different perspectives into the clus-
tering. Each profile describes its own vector space which can be separately used
for clustering. A co-training strategy for multiple view clustering was presented
by Appice et al. [2]. The authors combine multiple log profiles using unsuper-
vised co-training. Clustering of one log profile is iteratively constrained by the
similarities of the other profiles, leading to a unique clustering pattern.

To overcome the issue of heterogeneous scaled similarity criteria, occurring
when multiple criteria are included, Delias et al. [6] propose an outranking app-
roach. The authors build an overall metric using a non-compensatory method-
ology to overcome this issue. Song et al. [15] presented a comparative study to
improve trace clustering using dimensionality reduction methods. The authors
show the effect of applying three different reduction methods on the performance
of trace clustering. To further improve the clustering result, De Konick et al.
[12] incorporate expert knowledge into the clustering to produce results that are
more consistent with the expert’s expectations. However, distance-based trace
clustering do not consider the model evaluation bias, neglecting the accuracy of
the reconstructed process models from the sub-logs.

Model-based trace clustering techniques such as [17,21] combine the cluster-
ing bias and the model bias into an integrated view. ActiTraC [21] directly opti-
mizes the fitness of the underlying process models to produce accurate results.
In [17] a similar method is proposed which overcomes the stability issues of Acti-
TraC by first optimizing the average complexity of the models and then improve
the accuracy of each model separately. While model-based approaches are good
to produce accurate process models, they neglect the other process perspectives
such as the data perspective.

Finding Structure in the Unstructured 291

The method presented in this paper aims at addressing both mentioned
issues. It is inspired by our prior work [14] in which we cluster documents based
on usage behavior and content into activity-centric groups. In this paper, we
combine distance-based and model-based trace clustering methods to improve
clustering results. We transfer the same idea to trace clustering in process min-
ing, combining two distance measures to calculate the similarity between cases,
including the control-flow and the data perspective. To retrieve accurate process
models, we use an optimization algorithm to adjust the weighting of the distance
measures and clustering parameters.

3 Hybrid Feature Set Clustering

In this section, we introduce our hybrid feature set clustering method. We extend
existing trace clustering by optimizing the clusters using model fitness as a qual-
ity measure and incorporating case attributes.

3.1 Notation

First, we introduce the notations that are used throughout this paper. They
were derived from [1].

Definition 1 (Event, Attribute). Let E be the set of all possible event identifiers.
Events may be described by attributes, such as the timestamp. Let A be the set
of attributes and Va the set of all possible values of attribute a ∈ A. For an event
e ∈ E and an attribute a ∈ A: #a(e) is the value of attribute a for event e.

Definition 2 (Case, Trace, Event Log). Let C be the set of all possible case
identifiers. Cases can also have attributes. For a case c ∈ C and an attribute a ∈
A: #a(c) is the value of attribute a for case c. Each case contains a mandatory
attribute trace: #trace(c) ∈ E∗, also denoted as ĉ = #trace(c).

A trace is a finite sequence of events σ ∈ E∗ such that each event only occurs
once: 1 ≤ i < j ≤ |σ| : σ(i) �= σ(j).

An event log is a set of cases L ⊆ C such that each event only occurs at most
once in the log.

Definition 3 (Classifier). For an event e ∈ E, e = #activity(e) the activ-
ity name of the event e. The classifier can also be applied to sequences
〈e1, e2, ..., en〉 = 〈e1, e2, ..., en〉.

Table 1 shows an example event log of a procurement process. The log consists
of the cases L = {1, 2}, events E = {11, 12, 13, 14, 21, 22} and the attributes
A = {Case id,Event id,Vendor,Category,Timestamp,Activity,Resource}. The
table also shows the values of the attributes, for example, #category(1) = Office
supplies or #activity(13) = PO created.

292 A. Seeliger et al.

Table 1. Simplified example event log of a procurement process.

Case id Event id Vendor Category Timestamp Activity Resource

1 11 B. Trug Office supplies 2017-04-17 10:11 PR created John

1 12 2017-04-18 14:55 PR released Maria

1 13 2017-04-18 17:12 PO created Roy

1 14 2017-04-29 09:06 Goods receipt Ryan

2 21 Company Computer 2017-04-19 17:45 PO created Emily

2 22

3.2 Our Approach

Most trace clustering methods define a similarity function between the event
sequence of cases (e.g., Levenshtein distance or bag-of-activities) and then apply
a clustering algorithm (e.g., k-means, hierarchical, or partition methods) to seg-
ment the event log. As a result, such methods provide a set of sub-logs which
contain maximized intra-cluster and minimized inter-cluster similarity, neglect-
ing the quality of the underlying process model [4,21]. This may lead to unsatis-
factory results of the reconstructed models. Another issue of most existing trace
clustering approaches is that they do not explore the relationships between case
attributes to identify different behaviors on the data perspective. However, cases
might be influenced by their data attributes. For process analysts, it might also
be interesting to separate similar traces and put them into a different cluster if
their corresponding data attributes are inconsistent.

Our approach addresses both issues. Instead of solely relying on the similar-
ity function between traces, we additionally use the fitness [20] of the underlying
process model as a criterion for quality of sub-logs. The fitness of a model is a
normalized measure reflecting how many behaviors featured in the event log are
also contained in the discovered process model. Our goal is to find an optimal
separation of the event log such that the different process behaviors on both per-
spectives are clustered separately, while optimizing the fitness of the underlying
process models. Additionally, the number of clusters should be kept reasonably
small. Including additional data attributes uncovers certain behavior, for exam-
ple, different levels of product quality checks, which would normally be clus-
tered together despite being completely different regarding the data attributes.
By adding this additional perspective, we are able to separate such behaviors,
despite the cases being similar with respect to the control-flow. We combine
both perspectives to extract more valuable knowledge about the execution of
processes allowing us to distinguish between the different process behaviors more
accurately.

In the following, we will describe our hybrid feature set clustering approach
in detail.

Finding Structure in the Unstructured 293

Algorithm 1. Algorithm to retrieve the clusters
1 Let L be the event log, and let L̂ = {(ĉ) : c ∈ L} be the set of distinct event

traces of L.

2 Define lev(x, y) to be the edit distance of the event traces x, y ∈ L̂.

3 Define sim∗
lev(X, Y) to be the edit distance between two sets of event traces

X, Y ⊆ L̂:

sim∗
lev(X, Y) =

∑

x∈X

∑

y∈Y

lev(x, y) / (|X| · |Y |)

4 Define cases(t) = {c : c ∈ L ∧ (ĉ) = t} as the cases following event trace t ∈ L̂.

5 Define encode(c) = {Ia(#a(c)) : a ∈ A} with c ∈ L and I as an integer index

function; further define encodes(C) = {encode(c) : c ∈ C}.
6 Let S be the universe of all possible itemsets, S ⊆ S and si being the i-th

itemset in S.

7 Define itemsets : L̂ → P(S) as the function that returns the frequent itemsets

using the FPclose algorithm with θ being the minimum support threshold :

itemsets(t) = FPclose(encodes(cases(t)), θ)

8 Define simitemsets(Sa, Sb) to be the similarity function of the itemsets with

Sa, Sb ⊆ S:

simitemsets(Sa, Sb) =
2 · |Sa ∩ Sb|
|Sa| + |Sb|

9 Define traces(s) = {t : t ∈ L̂ ∧ s ∈ itemsets(t)} with s ∈ S to be the inverse

function of itemsets which returns the traces for a given itemset.

10 Define sim(sa, sb) to be the combined similarity function with sa, sb ∈ S,

w ∈ R and 0 ≤ w ≤ 1 to be the weighting factor:

sim(sa, sb) = w · sim∗
lev(traces(sa), traces(sb)) + (1 − w) · simitemsets(sa, sb)

11 Define M : S × S → R|S|×|S| to be the itemset distance matrix

M = (mij) = sim(si, sj)

12 Let cluster(M, n) be the hierarchical clustering function that returns the

cluster index of each itemset as a vector of size |S| with n ∈ N as the number

of clusters to generate.

13 Define C(k) to be the set of the traces in cluster k

C(k) = {cases(traces(sj)) | sj ∈ S ∧ cj ∈ cluster(M) ∧ cj = k}

Candidate Clusters. The first step of our approach is to generate a candidate
set of clusters. Algorithm 1 shows the generation of the clusters using the com-
bined similarity measure. From the event log L we extract all distinct event traces
L̂ (Line 1). For comparing the traces, we use the Levenshtein edit distance. It is

294 A. Seeliger et al.

defined as the minimum number of edit operations that are required to trans-
form one sequence into another. The edit operations are insertion, deletion, or
substitution of an element in the sequence. Each operation has a cost of 1. We
denote the normalized Levenshtein edit distance between two traces x, y ∈ L̂
as lev(x, y) (line 2). In line 3, we additionally define a function sim∗

lev which
calculates the pairwise normalized Levenshtein distance between the traces in
two sets. It is noteworthy that the Levenshtein distance can be replaced by a
more advanced measure (e.g., one that also recognizes concurrency).

As a second similarity measure, we incorporate the attributes and their values
of a case by extracting further knowledge about the underlying case relations.
The idea is to use the case attributes in the event log to extract dependencies
between attributes in certain process behaviors. Consider the procurement of
supplies. Usually, there are different order approval steps involved depending,
for example, on the material type of the purchased item. So, for office supplies
there might be only one approval step whereas for the spare part of an expen-
sive machine multiple approval steps of different departments are required. Such
variations are usually deployed to reduce the amount of process steps. With the
use of the case attributes, our approach is able to distinguish such behaviors
even if the behavior on the control-flow perspective is very similar.

To extract such knowledge patterns from case attributes, we use frequent
itemset mining (line 5–7). Specifically, we use the FPclose algorithm [8] to extract
closed frequent itemsets to limit the number of itemsets. An itemset is closed if
there exists no suitable superset which has the same support. We calculate the
frequent itemsets for all cases that follow the same trace t ∈ L̂. To retrieve all
cases that follow a specific trace t, we define a function cases(t) (line 5) which
maps a given event trace t to their respective cases based solely on the event
sequence. Note that while cases(t) yields a set of cases with identical behavior,
their case attributes might be quite different for which we mine frequent itemsets.
We calculate the frequent itemsets for a given minimum support threshold θ. So,
attribute-value pairs that occur in a certain amount of cases are extracted as
frequent itemsets, directly taking the frequency of cases following the same trace
into account. Case attributes are transformed using integer encoding, which is
a mapping Ia : Va → N (line 6), assigning each attribute-value pair a unique
positive integer. encode(c) is the encoding function that encodes all attributes
of a case c ∈ L. A similarity function between the two itemsets S1, S2 ⊆ S is
defined in line 8. It compares the two itemsets, in particular, the attribute-value
pairs, and returns the proportion of items which are contained in both sets.

In our approach, we do not cluster the cases itself but the itemsets of all
cases that follow the same trace. We define a similarity function sim(sa, sb)
that, on the one hand, calculates the similarity between itemsets and, on the
other hand, compares the traces that share the same itemsets (line 10). With
the weighting factor w we can control the balance between itemset similarity
and trace similarity. It is noteworthy that even if w = 1 the itemset similarity is
indirectly incorporated because traces that share the same itemsets are merged
together. Proceeding further, we generate a distance matrix M (line 11) and

Finding Structure in the Unstructured 295

use the Agglomerative Hierarchical Clustering algorithm to build a vector that
contains the cluster index for each itemset (line 12). In line 13 the result is
generated. C(k) contains a set of traces that are clustered into cluster k.

Generating Non-overlapping Clusters. Due to the construction of the Algo-
rithm1, generated clusters are overlapping. This is because we create the clus-
ters based on the itemsets and not based on the cases. For all cases that follow
a specific trace, multiple frequent itemsets can be mined which are not neces-
sarily clustered together, for example if the distance to other itemsets is lower.
Whenever this occurs, a trace and their corresponding cases are part of multi-
ple clusters. Even if it might also be interesting to analyze overlapping clusters,
in this paper we aim for non-overlapping clusters to reconstruct process models
using a discovery algorithm. To resolve the overlapping clusters, we assign traces
that are assigned to multiple clusters to the one with the minimum distance with
respect to sequence similarity.

We denote buildCluster(θ, n, w) to be the function which executes Algo-
rithm1 to generate the candidate clusters and the algorithm to resolve the over-
lapping.

Determine Optimal Parameters. In the last step, we optimize the minimum
support threshold θ, the number of clusters N , the weighting factor w such that
the fitness of the underlying model is maximized. The goal is to find an optimal
separation of cases such that the different behaviors are separated into clusters
while still being able to reconstruct accurate process models. We use the Flexible
HeuristicsMiner [22] to reconstruct the models for each cluster because of its
low computational costs and high accuracy in real-life scenarios. From these
models we calculate the weighted average improved continuous semantics fitness
measure (ICS) over all models.

Definition 4 (Weighted ICS Fitness). Let icsk the ICS-Fitness of a model k
and nk the number of cases in k, then the weighted ICS Fitness is defined as:

ICS − Fitness =
∑N

k=1(nk · icsk)
|L|

Besides the weighted fitness of the models, we also optimize the number of
cases assigned to a cluster, the number of clusters and the cluster silhouette
coefficient. It might occur that θ is chosen too high such that a small amount of
frequent patterns were extracted which should be avoided.

We use the Particle Swarm Optimization (PSO) [11] algorithm to maximize
the fitness of the mined models of each cluster, finding optimal values for θ, n, and
w. PSO is an evolutionary optimization algorithm which was initially inspired
by bird flocking, specifically, the group dynamics of the bird behavior. PSO
maintains a swarm of n particles p, the candidate solutions, which move around
in the search-space. Initially, particles p0 are randomly distributed in the search

296 A. Seeliger et al.

space and assigned an initial movement velocity v0. Each particle maintains,
the inertia ω, the best known position pbest, the global best position over all
particles gbest, a cognitive weighting factor ck and a social weighting factor cs.

Definition 5. For each iteration, a new velocity vector vn+1 is calculated with
r1, r2 being random factors for each iteration:

vn+1 = ω · vn + ck · r1 · (pbest − pn) + cs · r2 · (gbest − pn)

The movement of the particles is determined by their current position and
velocity as well as the local and global best known positions. Particles are
moved until the maximum number of iterations is reached. PSO executes the
buildCluster(θ,N,w) function and optimizes the model fitness as well as the
proportion of assigned traces. In our experiments, we found that 10 iterations
with 5 particles are appropriate. Although PSO does not guarantee a global opti-
mum, our evaluation results suggest that even local optima yield good results.

4 Evaluation

In this section, we evaluate our proposed approach in two different evaluation
settings. First, synthetic event logs are used to evaluate the quality of the gen-
erated clusters based on well-known evaluation measures for cluster analysis as
well as process mining related measures. We compare our approach with six
other clustering methods of the related work. Secondly, we use real-life event
logs to show the applicability of our approach. Here, we focus on the quality
of the generated models with respect to comprehensibility and accuracy. Our
proposed approach is implemented as the HybridCluster plugin1 in ProM.

4.1 Synthetic Event Logs Evaluation

We use synthetic event logs to evaluate and compare the performance of our
clustering approach with respect to the quality of the generated clusters.

Datasets. Currently, there exists no comprehensive benchmark for the evalua-
tion of trace clustering in the related work that focuses on the different behaviors
on both the control-flow and data perspective. We generated synthetic event logs
from random process models of different complexity (varying number of activi-
ties, maximum depth and branching factor). Five process models (see Table 2)
are generated using PLG2 [5]: Small, Medium, Large, Huge, Wide and custom
designed model with human readable activity names, all derived from [13].

For a representative data perspective, we generate sets of possible attribute
values Va, of size 20, for each of the case attributes a ∈ A. Then we assign case
attribute values to all cases by sampling from Va, for each attribute a. To intro-
duce some causal relationships, we force certain combinations of attribute values
1 Source code available at: https://github.com/alexsee/HybridClusterer.

https://github.com/alexsee/HybridClusterer

Finding Structure in the Unstructured 297

Table 2. Process models used for generating the event log: Number of activity types
(# at), number of transitions (# tr), number of variants (# dpi), maximal trace length
and out-degree.

Model # at # tr # dpi max length out-degree

P2P 14 16 6 9 1.14

Small 22 26 6 10 1.18

Medium 34 48 25 8 1.41

Large 44 56 28 12 1.27

Wide 56 75 39 11 1.34

Huge 36 53 19 7 1.47

to occur more frequently than others depending on the event sequence of a case.
Hence, each sequence of events will have certain attributes and attribute values
that represent causalities for this sequence. Note that it is possible that multi-
ple event sequences feature the same attribute value patterns. Consequently, we
obtain patterns that correlate both with the data perspective and the control-
flow, which will then represent our ground truth for the clusters. In the evaluation
we generate five clusters consisting of the different generated patterns.

To increase the complexity of the task we also incorporate some level of noise
(ranging from 0.0 to 0.2) into the control-flow [13]. For example by perturbating
the order of events, skipping of events or executing multiple events. In summary,
we generated event logs with different sizes (1 000, 2 000, 5 000 and 10 000),
varying number of attributes (5, 10, 15, 20) and 3 different noise levels (0.0, 0.1,
0.2), resulting in 288 event logs2.

Accuracy Results. We compare our hybrid feature set clustering approach
(HC) with six other trace clustering methods: bag-of-activities (BOA) [4], Lev-
enshtein edit distance (LED) [4], Context-Aware-Clustering (CAC) [3] and Acti-
TraC (ATC) [21]. For BOA and LED agglomerative hierarchical clustering with
ward linkage is used. For BOA+ and LED+ we filter out the event sequences
that occur less than 2 times. BOA, BOA+, LED, LED+ and CAC do not pro-
vide any optimization to find the optimal number of clusters, thus we vary the
number of clusters from 2 to the number of distinct traces and show the best
results for the same or less clusters as HC. For ATC we use standard setting,
80% stopping criterion for the frequency-based and MRA distance-based selec-
tive sampling. As a baseline without clustering (FHM) and for generating the
process models of each cluster, we use the Flexible Heuristics Miner [22].

Weighted Fitness, Precision and Generalization. To evaluate the accuracy of
the discovered models, we report the ICS fitness of the FHM which is in the
range of (−∞, 1]. For precision and generalization, we first use the Heuristics

2 Models are openly available: https://doi.org/10.7910/DVN/QBL1K0.

https://doi.org/10.7910/DVN/QBL1K0

298 A. Seeliger et al.

0,40

0,50

0,60

0,70

0,80

0,90

1,00

P2P Small Medium Large Huge Wide

Fi
tn

es
s

(a)

ATC BOA BOA+ HC FHM LED LED+ CAC

0,40

0,50

0,60

0,70

0,80

0,90

1,00

P2P Small Medium Large Huge Wide

Pr
ec

isi
on

(b)

ATC BOA BOA+ HC FHM LED LED+ CAC

0,40

0,50

0,60

0,70

0,80

0,90

1,00

P2P Small Medium Large Huge Wide

G
en

er
al

iza
on

(c)

ATC BOA BOA+ HC FHM LED LED+ CAC

1,00

1,20

1,40

1,60

1,80

2,00

2,20

2,40

2,60

P2P Small Medium Large Huge Wide

Cl
us

te
r S

et
 E

nt
ro

py

(d)

ATC BOA BOA+ HC LED LED+ CAC

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

P2P Small Medium Large Huge Wide

AR
I

(e)

ATC BOA BOA+ HC LED LED+ CAC

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

P2P Small Medium Large Huge Wide

Pu
rit

y

(f)

ATC BOA BOA+ HC LED LED+ CAC

Fig. 1. Evaluation results of the synthetic event logs: (a) weighted fitness of the models;
(b) weighted precision of the process models; (c) weighted generalization of the models;
(d) cluster set entropy (lower is better); (e) adjusted rand index; (f) purity.

Net to Petri Net plugin in ProM and then calculate the measures introduced in
[19]. Note that precision and generalization are sensitive measures that strongly
depend on the petri net (e.g., if the petri net contains silent or duplicate tran-
sitions). While the weighted fitness (see Fig. 1(a)) of the process model without
any clustering is quite low for all evaluated event logs, all trace clustering method
produced good results within the range of 0.969 and 0.925. The best ICS fitness
was achieved by LED+, followed by CAC and our HC method. Comparing the
precision (see Fig. 1(b)) of the models reveals that LED+ slightly outperformed
all other methods, followed by LED, ATC and BOA. Our HC method achieved
an average precision of 0.920 compared to 0.980 of the best. However, it is still
significantly better than the FHM. With respect to generalization (see Fig. 1(c)))
ATC outperformed all methods significantly, whereas our HC method is the sec-
ond best.

Finding Structure in the Unstructured 299

Table 3. Performance of the related work and our hybrid cluster approach with respect
to process model and clustering evaluation; best values in bold typeface.

Process model Clustering

Fitness Precision Generalization Purity ARI CSE |C|
FHM [22] 0.606 0.612 0.607 - - - 1.0

ActiTraC [21] 0.946 0.940 0.964 0.363 0.036 2.258 1.8

Bag-of-activities [4] 0.925 0.895 0.499 0.719 0.372 1.526 17.5

Bag-of-activities+ 0.952 0.925 0.661 0.713 0.367 1.507 20.1

Levensthein [4] 0.945 0.951 0.533 0.711 0.374 1.509 21.9

Levensthein+ 0.969 0.980 0.661 0.716 0.376 1.480 18.6

CAC [3] 0.957 0.948 0.510 0.729 0.381 1.484 22.6

Hybrid clusterer 0.956 0.920 0.746 0.937 0.736 1.100 26.7

Cluster Set Entropy, Adjusted Rand Index and Purity. While fitness, preci-
sion and generalization evaluate the accuracy of the process models, cluster set
entropy (CSE), adjusted rand index (ARI) and purity (see Fig. 1 (d)–(f) and
Table 3) evaluate the calculated clustering against the ground truth. Our app-
roach outperforms all other methods over all event logs with an average CSE of
1.100, an average ARI of 0.736 and an average purity of 0.937. A clear ranking
of the other methods cannot be made, as the field is mixed here. For smaller
models, the performance difference between our HC and the related work is less
significant.

Discussion. In our experiments, the HC approach is the only method that incor-
porates case attributes. Hence, the existence of case attributes that are somehow
related to the traces is essential for our method. While we used synthetic event
logs that contain such relationships, other event logs may not have these rela-
tions. Here, other trace clustering methods may perform better. Still, the aim
of our method is to combine both perspectives, the control-flow and the case
attributes, to generate behavioral similar sub-logs. Our method tries to over-
come the issue of unrelated case attributes by optimizing the balance between
both perspectives. In cases where no relationship is found, our method will prefer
giving the control-flow similarity more contribution.

However, when such a relationship exists, as presented in our evaluation, our
method provides a solid separation of the event log. With respect to CSE, ARI
and purity, our method works better than control-flow only based methods. Our
method is also able to generate process models with a good fitness, precision and
generalization, although being outperformed by other methods. The variance of
the traces within a cluster might be high which negatively influences the fitness,
precision and generalization. Another observation is that our approach generates
more clusters than other methods (see Table 1). This is mainly caused by the
separation of the different behaviors on the different perspectives.

300 A. Seeliger et al.

Table 4. Overview of real-life logs: The number of process instances (# pi), number
of events (# ev), number of activity types (# at) and the number of variants (# dpi).

Event log Event log properties Description

pi # ev # at # dpi

P2P 33 277 255 427 37 7 026 Procurement process

EV 1 434 8 577 27 116 Case handling system

HOSBILL 100 000 451 359 18 1 020 Hospital invoice billing

HOSLOG 1 143 150 291 624 981 Case handling in hospital

ROAD 150 370 561 470 11 231 Road traffic fine process

4.2 Real-Life Event Logs Evaluation

The second part of the evaluation applies our approach to real-life event logs.
In Table 4 we show some basic statistics of the used event logs, originated from
different environments to show the applicability of our approach in various sce-
narios. All event logs except for P2P are openly available3. Because we use
real-life event logs for which we do not know their real behavior, we focus on
the evaluation of the following measures: First, we measure the weighted fitness,
precision and generalization of models discovered by the FHM of each cluster.
Again, the heuristics nets are converted using the ProM plugin as mentioned
before. Second, we measure the complexity of the resulting models. For the five
real-life experiments we use the same settings as used in the synthetic evalua-
tion. Again, for BOA, BOA+, LED and LED+ we only report the best fitness
for the same or less number of clusters as HC.

Accuracy Results. The weighted fitness, precision and generalization results
are presented in Table 5. In all cases the FHM was outperformed by all clus-
tering techniques, concluding that a single model is not sufficient to accurately
model the observed behavior. The vector-based clustering approaches, i.e., BOA,
BOA+, LED and LED+, provide a relatively good fitness of the models. Acti-
TraC in general provides better fitness values as the vector-based approaches.
HC provides better or similar results as other clustering methods, except for
HOSLOG. This is due to the fact that HOSLOG contains many unique traces.
The HOSLOG event log origins from an hospital where the examination of each
patient is recorded and contains cases that usually do not follow a strictly defined
sequence. With respect to the precision and generalization, the field is mixed.

3 http://data.4tu.nl/repository/collection:event logs real.

http://data.4tu.nl/repository/collection:event_logs_real

Finding Structure in the Unstructured 301

Table 5. Results of the real-life logs showing average weighed fitness. Precision and
generalization in parenthesis. Missing values due to canceled calculation after 12 h.

P2P EV HOSBILL HOSLOG ROAD

FHM [22] −0.799 0.649 −0.781 0.554 0.434

(0.15/0.27) (0.66/0.41) (0.63/0.50) - (0.98/0.39)

ActiTraC [21] 0.729 0.893 0.651 0.719 0.973

(0.70/0.81) (0.72/0.91) - - (0.99/0.93)

Bag-of-activities [4] 0.146 0.793 −0.354 0.346 0.755

(0.29/0.48) (0.70/0.37) (0.86/0.37) - (0.95/0.50)

Bag-of-activities+ 0.519 0.839 −0.134 0.685 0.813

(0.50/0.77) (0.99/0.36) (0.98/0.73) (0.42/0.88) (0.90/0.65)

Levensthein [4] 0.196 0.871 −0.291 0.406 0.837

(0.42/0.55) (0.70/0.47) (0.77/0.62) - (0.99/0.72)

Levensthein+ 0.725 0.857 −0.017 0.001 0.979

(0.68/0.79) (0.84/0.73) (0.93/0.64) (0.68/0.68) (0.99/0.98)

CAC [3] 0.121 0.739 0.839 0.198 0.887

(0.40/0.53) (0.77/0.39) (0.74/0.72) - (1.00/0.56)

Hybrid clusterer 0.723 0.975 0.958 0.515 0.993

(0.61/0.77) (0.96/0.55) (0.97/0.81) (0.88/0.86) (0.99/0.99)

Complexity Results. We calculate four complexity measures based on related
work [6,18]. The graph density GD is defined as GD = |E|

|N |·(|N |−1) where |N |
are the number of nodes in the discovered heuristics net and |E| the number
of edges. The cyclomatic number CN is defined as CN = |E| − |N | + 1. The
coefficient of connectivity CNC is defined as CNC = |E|/|N | and the coefficient
of network complexity CNCK is defined as CNCK = |E|2/|N |.

Table 6 shows the average and maximum of each complexity measure. We
can see that our approach creates more clusters than other methods. This might
be due to the fact that even similar traces are split into multiple clusters when
they differ from the data perspective. The high number of clusters for ActiTraC
is caused by the explosion in clusters for the P2P and the HOSLOG event log.
When comparing the graph density, our method produces slightly denser process
models than other methods. For cyclomatic number, coefficient of connectivity
and coefficient of network complexity our hybrid clustering approach performs
better than all compared methods. Comparing the average and the maximum
numbers concludes that generated clusters of our method do not vary heavily.

302 A. Seeliger et al.

Table 6. Complexity measures for each approach.

GD CN CNC CNCK

|C| avg max avg max avg max avg max

ActiTraC [21] 198.4 0.15 0.66 11.10 116.60 1.38 2.22 46.37 477.28

Bag-of-activities [4] 18.2 0.12 0.20 82.33 114.20 1.15 1.20 329.05 456.40

Bag-of-activities+ 17.6 0.24 0.51 2.84 5.40 0.78 1.00 12.06 20.00

FHM [22] 1 0.10 0.18 185.00 803.00 1.80 3.00 754.40 3258.00

Levensthein [4] 29.2 0.11 0.32 37.96 120.80 1.00 1.40 154.28 484.60

Levensthein+ 22 0.20 0.42 3.61 7.60 0.76 1.20 15.10 28.80

CAC [3] 16.6 0.10 0.18 41.22 112.80 1.06 1.40 166.76 451.60

Hybrid clusterer 31.2 0.23 0.63 2.15 7.80 0.67 1.20 10.62 31.60

5 Conclusion

In this paper, we proposed a novel hybrid-feature set clustering approach in the
area of process mining. While other trace clustering methods mainly rely on the
control-flow, we use frequent pattern mining to extract further knowledge from
the case attributes. To produce accurate process models, our method uses the
particle swarm optimization to optimize the fitness of the underlying process
models by automatically finding appropriate parameters.

We implemented our approach as an openly available ProM plugin. We eval-
uated our approach by conducting a comprehensive evaluation using synthetic
and real-life event logs. We compared our approach to six other methods and
showed that our approach is able to separate process behaviors on the control-
flow as well as on the data perspective. For the synthetic event logs, our method
reaches an ARI of 0.736 in average over all models evaluated, whereas the second
best approach CAC reaches an ARI of 0.381. Besides using synthetic event logs,
we used 5 real-life event logs to show the applicability of our method.

Something that we did not inspect is the question, if the identified clusters are
relevant for process analysts during their analysis. Because this question is hard
to answer without an extended user study, we would like to address this in future
work. A first interview with a process mining consultant showed the interest in
the idea of incorporating both perspective into the clustering. Additionally, it
might also be interesting to incorporate expert knowledge to adjust the cluster
quality. We also want to extend the approach to support numeric attributes and
optimize runtime performance, because currently the algorithm has to perform
certain operations multiple times which can be precalculated or cached.

Overall, we can conclude that our hybrid feature set clustering approach is a
promising method for segmenting the event log into behavioral similar clusters.

Finding Structure in the Unstructured 303

Acknowledgements. This project [522/17-04] is funded in the framework of Hessen
ModellProjekte, financed with funds of LOEWE, Förderline 3: KMU-Verbundvorhaben
(State Offensive for the Development of Scientific and Economic Excellence), and by
the German Federal Ministry of Education and Research (BMBF) Software Campus
project “AI-PM” [01IS17050].

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes, 2nd edn. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19345-3

2. Appice, A., Malerba, D.: A co-training strategy for multiple view clustering in
process mining. IEEE Trans. Serv. Comput. 9(6), 832–845 (2016). https://doi.
org/10.1109/tsc.2015.2430327

3. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: towards
improving process mining results. In: Proceedings of the 2009 SIAM International
Conference on Data Mining, pp. 401–412. Society for Industrial and Applied Math-
ematics (2009). https://doi.org/10.1137/1.9781611972795.35

4. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S.,
Leymann, F. (eds.) BPM 2009 Workshops. LNBIP, vol. 43, pp. 170–181. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12186-9 16

5. Burattin, A.: PLG2: multiperspective process randomization with online and offline
simulations. In: CEUR Workshop Proceedings, vol. 1789, pp. 1–6 (2016)

6. Delias, P., Doumpos, M., Grigoroudis, E., Matsatsinis, N.: A non-compensatory
approach for trace clustering. Int. Trans. Oper. Res. (2017). https://doi.org/10.
1111/itor.12395

7. Evermann, J., Thaler, T., Fettke, P.: Clustering traces using sequence alignment.
In: Reichert, M., Reijers, H.A. (eds.) BPM 2015 Workshops. LNBIP, vol. 256, pp.
179–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1 15

8. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-trees.
IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362 (2005). https://doi.org/10.
1109/tkde.2005.166

9. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006).
https://doi.org/10.1109/tkde.2006.123

10. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Min. Knowl. Disc. 15(1), 55–86 (2007). https://doi.org/10.
1007/s10618-006-0059-1

11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Networks. IEEE. https://doi.org/10.
1109/icnn.1995.488968

12. De Koninck, P., Nelissen, K., Baesens, B., vanden Broucke, S., Snoeck, M., De
Weerdt, J.: An approach for incorporating expert knowledge in trace clustering. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 561–576. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59536-8 35

13. Nolle, T., Seeliger, A., Mühlhäuser, M.: Unsupervised anomaly detection in noisy
business process event logs using denoising autoencoders. In: Calders, T., Ceci,
M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 442–456. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46307-0 28

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1109/tsc.2015.2430327
https://doi.org/10.1109/tsc.2015.2430327
https://doi.org/10.1137/1.9781611972795.35
https://doi.org/10.1007/978-3-642-12186-9_16
https://doi.org/10.1111/itor.12395
https://doi.org/10.1111/itor.12395
https://doi.org/10.1007/978-3-319-42887-1_15
https://doi.org/10.1109/tkde.2005.166
https://doi.org/10.1109/tkde.2005.166
https://doi.org/10.1109/tkde.2006.123
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1007/978-3-319-59536-8_35
https://doi.org/10.1007/978-3-319-46307-0_28

304 A. Seeliger et al.

14. Seeliger, A., Schmidt, B., Schweizer, I., Mühlhäuser, M.: What belongs together
comes together. Activity-centric document clustering for information work. In: Pro-
ceedings of the 21st International Conference on Intelligent User Interfaces - IUI
2016. ACM Press (2016). https://doi.org/10.1145/2856767.2856777

15. Song, M., Yang, H., Siadat, S.H., Pechenizkiy, M.: A comparative study of dimen-
sionality reduction techniques to enhance trace clustering performances. Expert
Syst. Appl. 40(9), 3722–3737 (2013). https://doi.org/10.1016/j.eswa.2012.12.078

16. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP,
vol. 17, pp. 109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00328-8 11

17. Sun, Y., Bauer, B., Weidlich, M.: Compound trace clustering to generate accurate
and simple sub-process models. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 175–190. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3 12

18. Thaler, T., Ternis, S., Fettke, P., Loos, P.: A comparative analysis of pro-
cess instance cluster techniques. In: Proceedings der 12. Internationalen Tagung
Wirtschaftsinformatik, WI 2015, August, pp. 423–437 (2015)

19. Vanden Broucke, S.K., De Weerdt, J., Vanthienen, J., Baesens, B.: Determining
process model precision and generalization with weighted artificial negative events.
IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014). https://doi.org/10.1109/
TKDE.2013.130

20. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A multi-dimensional qual-
ity assessment of state-of-the-art process discovery algorithms using real-life event
logs. Inf. Syst. 37(7), 654–676 (2012). https://doi.org/10.1016/j.is.2012.02.004

21. Weerdt, J.D., vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clus-
tering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013). https://doi.org/10.1109/tkde.2013.64

22. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: 2011
IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE
(2011). https://doi.org/10.1109/cidm.2011.5949453

https://doi.org/10.1145/2856767.2856777
https://doi.org/10.1016/j.eswa.2012.12.078
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-319-69035-3_12
https://doi.org/10.1109/TKDE.2013.130
https://doi.org/10.1109/TKDE.2013.130
https://doi.org/10.1016/j.is.2012.02.004
https://doi.org/10.1109/tkde.2013.64
https://doi.org/10.1109/cidm.2011.5949453

	Finding Structure in the Unstructured: Hybrid Feature Set Clustering for Process Discovery
	1 Introduction
	2 Related Work
	3 Hybrid Feature Set Clustering
	3.1 Notation
	3.2 Our Approach

	4 Evaluation
	4.1 Synthetic Event Logs Evaluation
	4.2 Real-Life Event Logs Evaluation

	5 Conclusion
	References

