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Abstract—Cloudlets are small-scale offloading units for low-
latency demands, offering a unique opportunity for emerging
smart city applications such as autonomous driving or aug-
mented reality. While previous works have investigated the
general concept of cloudlets, little attention has been directed
to the question of where to actually place cloudlets on existing
infrastructure in a city. Due to cloudlets’ heterogeneity in this
context, their placement remains challenging.

In this paper, we first provide a thorough analysis of a city-
wide cloudlet infrastructure deployed on three types of existing
infrastructures that act as wireless access points: cellular base
stations, commercial off-the-shelf routers, and smart lamp
posts. Based on real-world data for the access point locations in
a major city and movement traces of two mobile applications,
we analyze multiple coverage metrics to gain insights on the
practicability of leveraging these infrastructures for a city-scale
deployment of cloudlets. As a second major contribution, we
propose a novel placement strategy that takes into account the
heterogeneity in terms of communication ranges, resources, and
costs associated with each type of cloudlet. Our strategy enables
the tradeoff between deployment cost and quality of service as
required for different deployment scenarios. The effectiveness
of our strategy is confirmed through real-world-trace-based
evaluation.

I. INTRODUCTION

The proliferation of advanced mobile applications such as

those based on virtual reality (VR) or augmented reality

(AR) has imposed very stringent resource requirements

on the mobile devices [1]. Although those devices are

becoming more powerful, their capability of handling the

advanced applications is still restricted due to size and energy

constraints. Cloud-based solutions [2], [3], while addressing

the resource limit issue, fail to entirely fulfil the needs due to

concerns over latency and traffic volume. Furthermore, they

lack support for mobility [4] and context awareness [5]. These

drawbacks have a severe impact for a number of upcoming

applications (including AR and VR applications), where large-

volume data such as video streams need to be processed

in real-time [6]. Recently, a technology trend—labeled as

fog computing [7]–[9] or edge computing [10]–[14]—has

emerged that aims to bring storage [15] and computing

[16] capabilities closer to mobile users, leveraging existing

Figure 1. A multi-cloudlet urban infrastructure consisting of upgraded cell
towers (purple), routers (green), and smart street lamps (orange).

devices to reduce latencies and core network utilization.

As a key driver of this trend, cloudlets [17] have been

proposed. Cloudlets are well-connected micro data centers

at the edge of the network, serving as offloading targets

for data and computations from resource-constrained mobile

devices. Research in this direction has addressed various

problems that often relate to runtime issues, e.g., offloading

mechanisms [18] and programming models [19]. However,

little attention has been paid to the question on where to

deploy cloudlets on a city-scale.

Since establishing new infrastructures to host cloudlets

for their widespread coverage is costly, we suggest to

place cloudlets on three types of infrastructures present

in every city: cellular base stations, commercial off-the-

shelf routers, and street lamps. Mobile users can then

leverage these cloudlets for offloading. This general idea is

visualized in Figure 1. We furthermore believe that exploiting

existing infrastructure is an important enabler for future smart

city applications [20]–[23] that provide services to citizen.

Example services include environmental monitoring, traffic

management and optimization, emergency response, and AR

games.

To show the feasibility of this approach, we first conduct

an analysis of the coverage that can be achieved when

only a subset of these infrastructures are upgraded to host

cloudlets. For this, we use four different metrics of coverage

(spatial, point, path, and time coverage) and investigate



how they affect the resulting coverage. Second, instead of

randomly choosing a certain number of access points to

upgrade, we turn our attention to placement strategies that

aim to minimize placement costs and maximize the available

offloading capabilities for users. Existing algorithms from the

domain of wireless sensor networks (WSNs) that optimize

coverage often do not consider heterogeneity in terms of

cost and resources—something characteristic of our problem

domain—and therefore cannot be applied to make reasonable

placement decisions for the deployment of cloudlets. To the

best of our knowledge, this paper is the first to close this

gap by proposing a joint optimization of coverage and costs

for the placement of heterogeneous cloudlets. For both our

coverage analysis and the evaluation of placement strategies,

we use extensive real-world data from Darmstadt, a major

German city. The datasets contain the locations of access

points in the city as well as user traces from two mobile

applications.

In summary, the contributions of this paper are threefold:

• Understanding. We study the particular characteristics

and stakeholders of a city-wide, heterogeneous cloudlet

landscape on three existing urban infrastructures (namely

cell towers, routers, and street lamps).

• Coverage Analysis. To examine the (partial) benefit of

the different cloudlet-capable infrastructures, we perform

a comprehensive coverage analysis on real-world data

from a representative city. Given location data of access

points, we analyze what degree of coverage can be

achieved by using a certain percentage of all available

access points. For this purpose, we define four different

coverage metrics.

• Placement Strategy. Based on the findings of the cov-

erage analysis, we propose GSCORE—a novel strategy

for placing cloudlets in urban spaces that considers

the infrastructural heterogeneity wrt. costs and quality

of service (i.e., communication ranges and available

resources). The evaluation shows that GSCORE outper-

forms the baseline strategies in different scenarios.

The remainder of this paper is organized as follows. First,

we provide background information and review related work

in Section II. Next, Section III introduces the considered

multi-cloudlet architecture. Our real-world datasets are de-

scribed in Section IV. In Section V, we perform our coverage

analysis of urban cloudlets. We formulate the placement

problem and propose an algorithm to place heterogeneous

cloudlets in Section VI. Finally, Section VII concludes the

paper and discusses future work.

II. BACKGROUND AND RELATED WORK

In this section, we provide background information and

review related work in the domains of cloudlets, computation

offloading, coverage, and the placement of cloudlets.

A. Cloudlets and Edge Computing

Up until recently, offloading computations was mostly

done through what is known as Mobile Cloud Computing
(MCC) [2], [3], i.e., by making use of cloud computing

infrastructures [24]. To counter the drawbacks of MCC, re-

searchers have made efforts to push computations closer to the

mobile end users by providing lightweight computing entities

close-by. As a pioneering idea to realize this, the notion

of cloudlets has first been introduced by Satyanarayanan

[17] as a concept to provide small-scale data centers that

can be leveraged by nearby devices. Initially based on

virtual machine technology, performance considerations have

since then shifted the practical implementation of cloudlets

towards more lightweight virtualization technologies, such

as containers [25]–[27] or unikernels [28]–[30]. Liu et al.

[27] present an edge computing platform that is based on

customized Docker containers instantiated on standard routers.

Fesehaye et al. [31] analyze the impact of using cloudlets

with regard to latency and throughput from a user perspective

compared to cloud computing. Others have pointed out the

benefits of using cloudlets to reduce the energy consumption

[32]. Besides hosting cloudlets on dedicated infrastructures,

Chen et al. [33] and Chi et al. [34] also suggest the use

of ad-hoc cloudlets, i.e., cloudlets that are hosted on the

mobile devices themselves and interact with other nearby

devices. The concept of cloudlets has been used to realize

various kinds of applications, including caching big data [35],

providing cognitive assistance [6], [36], and enabling AR

applications [37]. Pang et al. [38] survey the current state

and future challenges of cloudlet-based mobile computing.

B. Computation Offloading

Several frameworks for offloading computations from

mobile devices have been proposed. MAUI [18] is based on a

profiler that decides on a method-level granularity where parts

of the applications are offloaded to. The main focus of their

work is on energy-awareness, aiming to maximize the lifetime

of mobile devices. The authors of CloneCloud [24] introduce

a partitioning mechanism that enables devices to offload parts

of the execution to device clones in the cloud. Ding et al. [39]

present MADNet, an energy-aware offloading architecture

for mobile phones. A special case of devices to offload to

are privately owned routers that have either been used to

discover surrogates [40] or to perform computations on their

own [41]. Besides offloading computations, the authors in

[15] extend the notion of edge cloudlets and consider them

as micro-storage units at the edge of the network. Providing

offloading capabilities at the radio access network (RAN)

has been investigated in [42], with the special case of so-

called femtocells [43], which are less expensive to deploy and

operate. Visions for offloading infrastructures also include the

use of drones to host cloudlets [44]. In contrast to our work,

none of the existing works have considered street lamps as

locations for cloudlets.



C. Coverage

The problem of coverage has been studied extensively

in the context of WSNs, as analyzed in various surveys

[45]–[48]. In general, coverage describes how well an area

of interest can be monitored [45], [46]. There are several

scenario-specific definitions of coverage, such as sweep

coverage [49] or barrier coverage [50]. In a way similar

to cloudlets, participatory sensing requires volunteers to

contribute. In this domain, Gedeon et al. [51] have examined

the spatial and temporal coverage of moving sensors in cities,

some of which are carried around by people. In our urban

cloudlet scenario, coverage refers to the quality of service that

can be delivered by the network. Similar to our definitions

of coverage that will be introduced in Section III-B, Fan et

al. [52] propose different definitions of coverage, namely

area, point, and path coverage. We alter these definitions to fit

the scenario of mobile users in the city that wish to perform

offloading. Examining the coverage of edge cloudlets has

been done by considering only one type of cloudlet [40], or

focusing on temporal [53] or point coverage [54] only.

D. Cloudlet Placement

While there is abundant research on the placement of

(virtualized) computing resources, both for homogeneous

environments like data centers [55], [56] and in the context

of cloudlets and edge computing [57]–[59], the question

of where to place cloudlets on available heterogeneous

infrastructures has seldom been examined. Two works [60],

[61] study the placement of cloudlets in wireless metropolitan

area networks (WMANs) and jointly propose solutions for the

user-to-cloudlet allocation problem, but they do not consider

the costs of cloudlets. Xu et al. [60] present a greedy heuristic

to minimize the average access delay of mobile users to a

cloudlet. Jia et al. [61] devise two algorithms to minimize the

response time: Heaviest-AP First (HAF) and Density-Based
Clustering (DBC). The former places cloudlets to the access

points where user workloads are the heaviest, while the latter

places cloudlets according to user-dense regions. Caselli et

al. [62] focus on the planning of a cloudlet network that

consists of cellular base stations only. Similarly, the authors

in [63] analyze a large dataset of cell tower locations in the

US. Without considering the costs or computing resources,

they investigate the distance reduction to data centers when

cell towers of a certain category —classified according to the

estimated residential population— are upgraded with micro

data centers.

Yao et al. [64] investigate the cost-aware deployment

of cloudlets that are heterogeneous with respect to costs

and resource capacities. They adopt a greedy strategy that

iteratively chooses cloudlets with minimum unit cost of

resources. Compared to our model, they make assumptions

that are not realistic, e.g., that there is no spatial overlap

in the deployment of cloudlets and that the entire area is

covered by access points. Even though the authors consider

Table I
CHARACTERISTICS OF ACCESS POINT TYPES

Cellular Routers Street Lamps
Base Stations

Density low high medium

Ownership Mobile network ISP, businesses or Municipal
provider private

Access technology 3G / 4G WiFi WiFi

Communication high low low-medium
range

Computational high low-medium low
resources

Costs high low-medium low

heterogeneous cloudlets, they are not linked to real-world

infrastructure. In contrast, we consider three different types

of infrastructure, each with specific characteristics. Bulut et

al. [65], [66] have studied the deployment of WiFi access

points. They do however assume that access points can freely

be placed anywhere. In contrast to that, we assume that

we cannot influence the placement of the access points but

instead have to choose a subset of the existing ones.

III. A MULTI-CLOUDLET ENVIRONMENT

We now introduce our cloudlet environment, namely the

different types of cloudlets and our definitions of coverage

for the later analysis.

A. Types of Cloudlets and Stakeholders

For our urban scenario, we consider cloudlets to be

hosted on three types of infrastructure: cellular base stations,

routers, and street lamps. Mobile users in the vicinity of

these cloudlets can then make use of them to offload data

and computations. The different types of access points are

heterogeneous in a number of ways. First, due to different

wireless access technologies, their communication ranges

vary. Second, due to the physical space available for hardware

installations at the access points, the computing resources at

the cloudlets vary. Lastly, we have different stakeholders that

own or operate the infrastructure. This leads to different

business models and hence, varying costs of using the

cloudlets. We summarize the characteristics of each type

of cloudlet in Table I. The use of existing infrastructure

as well as future infrastructures, such as lamp posts in the

context of smart cities, allows a cost-effective placement of

cloudlets. Moreover, this allows a smooth transition when

replacing existing access technologies with emerging ones

(e.g., moving from 4G to 5G). Our scenario makes use of

the heterogeneous landscape and takes advantage of it in

two ways. First, our scenario builds on a realistic hardware

landscape that already exists in most urban areas, which

makes our approach transferable to the real world. Second,

we use this heterogeneity for a targeted optimization of the

placement of cloudlets. With the implementation of different

cloudlet types, several stakeholders are involved, especially

in the context of smart cities.



1) Cellular Base Stations: Since every major city today

is entirely covered with cellular reception, cellular base

stations are a good location to deploy cloudlets if we want

to assure that they can reach a large number of users.

Another advantage is their high reliability [67] and good

interconnection with backhaul networks. However, the access

latency might be subject to a high variance. Offloading to

cellular base stations is commonly referred to as Mobile

Edge Computing (MEC) [21], [68] and motivated by the fact

that offering computing and storage resources at the extreme

edge of the network is a future business opportunity for

service providers and network operators. This trend is further

going to be fueled by the advent of 5G networks [69] and the

deployment of femtocells [43]. Additionally, at most cellular

stations, there is enough physical space available to install

massive computing resources in the form of server-grade

hardware.
2) Routers: Next, we consider commercial off-the-shelf

WiFi routers. Unsurprisingly, their density in urban areas

is very high. It is important to note that these devices are

either privately owned, are public access points, or belong

to businesses. The latter often already offer their customers

free WiFi access, while other projects promote the open

sharing of ones WiFi (e.g., Freifunk1 in Germany). We argue

that going one step further—from providing network access

towards computational capabilities—is a natural progression.

To allow easy access, computing resources can either be

located on the routers themselves or one network hop away

in the local network connected to the router.
3) Street Lamps: Besides service providers, businesses,

and private citizens, municipalities also have an inherent

interest to enable services that lead to smarter cities. For this

reason, we envision cloudlets to be placed on lamp posts.

Upgrading lamp posts to host cloudlets might seem to incur

a huge investment at first. However, municipalities around

the world are currently in the process of updating their street

lighting, mostly due to energy considerations. According

to the Humble Lamppost project2, 75% of lamp posts in

Europe are over 25 years old and consume between 20 and

50% of a city’s energy budget. Therefore, investments to

upgrade lamp posts to LED-based lighting with additional

functionalities, such as sensory capabilities and network

connectivity, will amortize in only a few years. Consequently,

a number of commercial products are already available,

e.g., the SM!GHT3 lamp by the German company EnBW.

We argue that in view of this trend, installing additional

hardware to provide computing resources is a negligible

investment. From the perspective of users moving on a city

street, cloudlets on lamp posts would have the advantage of

a less obstructed communication range compared to routers

located in buildings.

1https://freifunk.net (accessed: 2018-05-17)
2https://eu-smartcities.eu/initiatives/78/description (accessed: 2018-08-23)
3https://smight.com/en/ (accessed: 2018-05-17)
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Figure 2. Stakeholders and their benefits in a multi-cloudlet scenario.

To conclude this section, the placement of cloudlets brings

advantages on the side of infrastructure providers, such as a

more efficient utilization of the network. To transfer these

benefits to an application or service, our scenario considers

the service provider as a second stakeholder. The service

provider is responsible for the placement of cloudlets, which,

for example, can be based on service usage. Only if a

targeted placement of cloudlets takes place by the service

provider (e.g., by taking into account demands and cost

considerations), a significant saving effect can be realized

by the infrastructure provider (e.g., lower utilization of the

backhaul link). Furthermore, due to lower latency and higher

throughput of the targeted cloudlet placement, higher service

quality can be achieved. This leads us to the last stakeholder

in our scenario, the user. Both providers are interested in

providing their users with the best possible service. The

infrastructure provider, such as the mobile network provider,

has the role of a trailblazer providing the connection to

the Internet. Thus, his focus is on factors such as network

throughput and latency to provide valuable service quality

to their users. In an urban cloudlet scenario, these interests

cannot be assessed detached from the underlying service,

which in turn highlights the role of the service provider.

However, on the part of the user, targeted placement of

cloudlets by the providers should result in higher service

quality and user satisfaction. Figure 2 illustrates the tension

between the stakeholders in our scenario.

B. Coverage Definitions

The term coverage is most widely used in the context

of WSNs [70]. In this domain, coverage denotes how well

an area of interest can be monitored by sensors. Coverage

is therefore a metric for the quality of service the network

can deliver. While many definitions of coverage exist, not

all of them are applicable to the application domain of

cloudlets. For instance, barrier coverage [50] denotes the

singular detection of a target inside an area. It is not a
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Figure 3. Coverage metrics.

sensible metric for our application domain because we want

mobile users to have a continuous connection to cloudlets

and not just at a single point in time. Instead, for our analysis

of urban cloudlet coverage, we consider the following four

coverage metrics:

Spatial coverage: This is defined as the ratio between the

union of the communication ranges of available cloudlets

and the total size of the area (see Figure 3(a)). Consequently,

spatial coverage gives only an indication on how well an area

is covered by cloudlets and does not consider user locations.

Point coverage: Point coverage indicates how many

recorded location points of a mobile user are within the

communication range of a cloudlet, as depicted in Figure 3(b).

This coverage metric can therefore be used to model if user

requests at distinct points can be served by a cloudlet.

Path coverage: Since users also move between the distinct

points at which their position is recorded, path coverage

takes into account the entire path length when computing the

coverage ratio (see Figure 3(c)). This allows to model use

cases where users need continuous connectivity to a cloudlet,

e.g., when continuously processing video streams.

Time coverage: The different segments, i.e., the individual

distances between two consecutive points in a user’s path,

might have different travel times. This metric works in a

similar way as path coverage, but instead of the length of

the path considers its duration (see Figure 3(d)).

IV. DATASETS

We investigate the placement of cloudlets in the city of

Darmstadt, Germany, a major city with a population of about

150 000. To do so, we use real-world data for both the location

of access points and the traces of mobile users as described

hereinafter. While the official administrative boundary of the

city is depicted in Figure 4(a), we restrict our analysis in

the remainder of the paper to the inner city area (spanning

an area of 14.57km2) as shown in Figure 4(b) because most

of the access point data gathered lies within that boundary.

This is especially true for the routers, which were collected

by volunteers. Furthermore, the inner city area allows us to

study the interplay between all three types of infrastructure,

not all of which might be available with the same density in

more rural areas.

(a) Administrative city boun-
dary

(b) Inner city area

Figure 4. City areas of Darmstadt.

A. Access Point Locations

In total, we collected the locations of nearly 50 000 access

points throughout the city for the different types of access

points. We now provide a description of how this data was

obtained.

1) Cellular Base Stations: The Bundesnetzagentur (Fed-

eral Network Agency) is the regulating body in Germany

in charge of authorizing and supervising the operation of

radio installations. All transmitting stations, including cell

towers, can be viewed through their website4. However, the

website does not provide a feature to export the data. Thus,

we performed a manual crawl using the network panel of the

Google Chrome browser developer tool. We issued a query

of all the cell towers within the city and parsed the resulting

JSON data that contains their GPS locations.

2) WiFi Routers: We followed a wardriving approach to

collect information about WiFi networks in the city and

used this data to estimate the position of routers within

the city. Using an Android application, volunteers walked

around the city and collected the signals from available WiFi

access points. We used the raw data from two volunteering

campaigns, conducted in March 2016 and February 2018.

In total, 27 participants —mostly students— were involved.

4http://emf3.bundesnetzagentur.de/karte/ (accessed: 2018-05-17)



Table II
NUMBER OF ACCESS POINTS COLLECTED

Cellular Routers Street Lamps
Base Stations

Total 205 34 699 14 331

Density per km2 1.7 284.0 117.3

Inner City 66 31 974 5608

Density per km2 4.5 2194.5 384.9

The positions of the access points were then estimated via

multilateration from multiple measurements of the same

access point’s RSSI. By doing a lookup on the MAC

addresses, we eliminated all manufacturers that do not

produce routers. While this data might include some wrong

data and uncertainty regarding the exact positions of the

access points, we argue that overall this gives a reasonable

estimation of the available routers to place cloudlets. More

importantly, the data was collected while walking through the

city and not inside buildings or private locations, therefore

reflecting the usage context of a mobile user who wishes to

perform opportunistic offloading.

3) Street Lamps: We obtained a database dump of the

position of all street lighting in Darmstadt from e-netz
südhessen GmbH5, the company in charge of managing the

city’s electrical infrastructure. The dataset includes different

types of street lighting, such as lights hung via cables over

streets, but we only include fixed lamp posts for our further

analysis of cloudlet coverage and placement, as they provide

enough space and a safe enclosure to install additional

hardware for cloudlets.

To conclude the description of the access point datasets,

Table II summarizes the number and density of each access

point type for the different city areas.

B. Mobility Traces

To be able to analyze the different types of coverage that

take into account the user’s position, i.e., point, path and

time coverage (see Section III-B), we need realistic mobility

traces that reflect where in the city we have demands for

offloading. For our analysis, we use data from two mobile

applications, Kraken.me and Ingress. Additionally, we include

artificially generated mobility traces from a simulation tool.

The three datasets differ with respect to the mobility patterns

they represent. In addition, they feature locations both inside

buildings and outside. We believe that combining them in

our analysis can therefore be used to model offloading use

cases for various applications. For example, Kraken.me maps

the daily activities of users, i.e., a large amount of time users

are at home or work, while Ingress directs users to specific

locations in the city.

1) Kraken.me traces: Kraken.me [71] is a tracking frame-

work that records users’ activities and gathers data from

various soft and hard sensors on mobile devices in order to

5https://www.e-netz-suedhessen.de/ (accessed: 2018-05-17)

Table III
MOBILE APPLICATION TRACES

Kraken.me Ingress CrowdSenSim
Users 205 1401 2499
Data points 437 417 520 409 431 001
Paths 11 930 47 915 44 150

provide personal assistance. During the development, a user

study was conducted for several weeks using Android phones.

Participants of the study were mostly students and university

research staff. For our evaluations, we use a stripped dataset

that only contains the timestamped positions along with a

unique user ID.

2) Ingress game data: Ingress6 is a popular mobile AR

game and the predecessor of Pokémon Go. Players visit

portals at physical locations in the city. Each player needs

to visit and interact with multiple portals, which leads

to a constant movement of the player in the real world.

Consequently, the users’ positions are recorded implicitly by

the interaction at the portals. In total, there are 724 portals

located in the inner city area of Darmstadt. The current state

of the game and player activity is visible on the Ingress

Intel Map website7. We built a crawler based on Python

and Selenium, a tool that automates browsers, and requested

changes in the game state every second. It is important to

note that changes include the position updates from players

at portals. Because the user locations are only recorded at

the portals and not between, the data is more coarse-grained

in terms of temporal resolution compared to the Kraken.me

data. Due to the nature of the game, users are directed to

the portals. However, the positions are also a good indicator

for offloading demands related to other applications, since

portals are often located at points of interest in the city.

3) Generated mobility traces: Lastly, to extend the number

of available data points for our analysis, we artificially

generated mobility traces by using CrowdSenSim [72], a

discrete-event simulator for mobile crowd sensing. The

simulator can generate user traces in urban areas where

users roam around the city and randomly take turns onto

streets. We set the simulation parameters such that several

simulations are carried out for 7 days with 2500 users. The

minimum and maximum travel times per path were set to

30 minutes and 720 minutes, respectively.

For each dataset, we performed a basic filtering of the

data, such as removing data points with obviously erroneous

positions or timestamps. We further defined threshold values

for the minimum distance between two points (5m), the total

spatial extent of a path (2000m2), and a time threshold for

the start of a new path (5 minutes). The resulting number of

distinct users, data points, and paths are summarized for the

inner city boundary in Table III.

6https://www.ingress.com/ (accessed: 2018-05-17)
7https://www.ingress.com/intel (accessed: 2018-05-17)



V. COVERAGE ANALYSIS OF URBAN CLOUDLETS

In this section, we analyze the coverage of urban cloudlets

when only a certain percentage of access points are upgraded

to host those cloudlets. We perform the coverage analysis

according to the four metrics we defined in Section III-B.

A. Spatial Coverage

First, we only investigate spatial coverage for the in-

dividual access point types without considering mobility

traces of users. Figure 5 shows the results for cellular

base stations (Figure 5(a)), routers (Figure 5(b)), and street

lamps (Figure 5(c)). We assume a unit-disk model for the

communication ranges and show the results for different

realistic communication ranges for each type of cloudlet. For

each step of 10 percent, the corresponding number of access

points is randomly chosen. Besides access points located

inside the inner city boundary, we also include access points

whose communication ranges span across that boundary. Each

experiment is run five times. While the resulting plots also

display the corresponding error bars, they are very small

for routers and lamps, since their communication ranges are

much smaller and, thus, overlaps that impact the gain in

coverage are unlikely. From the results, we can observe the

general trend that a rather small fraction of upgraded access

points is sufficient to provide good spatial coverage. This

is especially true for routers because of their sheer number.

Assuming a rather conservative communication range of 40m,

already 20 percent of routers lead to almost 60 percent spatial

coverage. For street lamps, the same fraction results in about

30 percent coverage. The increase in coverage for routers

and street lamps is slower from a certain point on because

with increasing numbers we get more spatial overlap in the

communication range and, thus, less gain in overall coverage.

In comparison, there are far less cell towers; they however

have a much greater communication range. Figure 5(a) shows

two consequences of this. First, adding more cell towers

keeps increasing the overall coverage more significantly

compared to routers and lamps and second, intersections

in the communication ranges lead to high values in the error

bars for small percentages.

We expect the overall coverage ratio to be even better with

the following analyses that are based on mobility traces. Here,

we will examine the coverage when combining different types

of access points.

B. Point, Path, and Time Coverage

Next, we consider the mobility traces described in Sec-

tion IV-B and evaluate the point, path, and time coverage (as

defined in Section III-B) of the datasets. Since users are not

evenly distributed in the city, this analysis allows for more

realistic insights on cloudlet coverage, especially since users

tend to change their location frequently. The datasets give

realistic estimations on where offloading capacities will be

required in the future. For instance, upcoming versions of the

Table IV
EVALUATION SCENARIOS

Scenario# Cellular Routers Street Lamps
Base Stations

SC1 75% (68) 10% (3224) 25% (1433)
SC2 75% (68) 25% (8060) 10% (573)
SC3 50% (45) 25% (8060) 25% (1433)
SC4 50% (45) 50% (16 120) 5% (286)
SC5 25% (22) 25% (8060) 10% (573)
SC6 25% (22) 10% (3224) 50% (2867)

Ingress game might require more sophisticated processing

for AR that cannot be handled by the mobile device itself.

To reflect different deployment and business models, we

define different scenarios with a varying number of access

points of each type available. As an example, by incentivizing

private individuals to provide computing capabilities at their

home routers, the number of these devices that are available

will increase. Similarly, network operators and municipalities

are likely to have different cost constraints and willingness

to upgrade their infrastructure. Subsidies might be another

way to influence this. We define six different scenarios as

described in Table IV with the relative and absolute number

of access points per type. Assuming again a unit-disk model

for the communication ranges, we select them randomly

between the following ranges. For cellular base stations,

the communication ranges are set between 300 and 1000

meters. Some works suggest an average communication

range between 50 and 60 meters for WiFi routers [73], [74].

However, in our urban scenario, this might vary greatly (e.g.,

due to obstacles or different building structures); therefore,

for cloudlets on routers and street lamps, we choose a range

between 10 and 80 meters. Figure 6 plots the results for the

three datasets. In each of the plots, we evaluate the point,

path, and time coverage per scenario. The individual bars

are stacked to represent the combined coverage we obtain

from multiple types of access points. The stacking represents

the additional coverage we gain by adding the subsequent

type of access point. We assume that as the first type of

access point, street lamps will be chosen, since—giving

the underlying business model of municipalities providing

services to their citizen—they will incur the lowest costs

for users. Furthermore, because most of our location traces

are not inside buildings but outside, street lamps are likely

to be closest and therefore the best-connected cloudlets for

users. The next part of the bar represents how much coverage

routers add to points, paths, or time spans not covered by

those lamps. Since our model assumes cell towers to be the

most expensive type, they are used last to fill the gap that

cannot be covered by other types of access points.

From the results, we can make a number of interesting

observations. Surprisingly, the variance between the different

types of coverage (i.e., path, point, and time coverage) is very

small. While there are variances in the datasets with respect

to the distance and difference in times between the data
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Figure 5. Spatial coverage for different access point types.
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(c) CrowdSenSim

Figure 6. Coverage analysis of path, point, and time coverage for the mobility traces.

points, this seems to average out for the whole dataset. For

datasets with coarser temporal resolution, such as Ingress,

we can still see a lower time coverage compared to the

other metrics. Overall, this result shows that even if we only

measure the coverage at single locations, on a global scale,

users will most likely also have a connection to a cloudlet for

most of the time along their path. We believe this provides

an interesting insight for the planning of city-scale cloudlet

infrastructures in the case where there is only limited data

available to estimate the required demands. For instance, data

protection laws might restrict the linking of entire user paths

with their timestamps. Our analysis shows that regardless of

what kind of data is available, each of the three coverage

metrics can be used to estimate the resulting coverage for

mobile users with offloading demands.

Looking at the overall coverage across the datasets, we see

that the coverage is higher compared to the previous spatial

coverage analysis because spatial coverage also includes

areas that are less likely to be populated by people. This

is validated by the fact that for the CrowdSenSim dataset

(Figure 6(c)), which are generated movement traces rather

than real ones, the overall coverage is lower compared to

Kraken.me (Figure 6(a)) and Ingress (Figure 6(b)). In general,

when combining the different rather small percentages for

the individual types, we get high overall coverage ratios. For

instance, for the first scenario (SC1) of the Kraken dataset,

selecting only 25% of street lamps leads to almost 50%

of coverage for that type alone. Adding routers, which are

present in much greater number, the coverage surpasses 90%.

This result holds true across all investigated datasets and

coverage metrics. Obviously, the percentage of lamps that

is selected first has the highest impact on the distribution

of access point types to their contribution to the coverage.

Routers always are able to fill up the coverage to over 90%,

except for the artificially generated traces because those traces

are strictly restricted to streets and therefore, fewer routers

might be able to reach them. We can further observe that cell

towers, which are likely to be most expensive and distant to

the user, are still useful in filling coverage gaps and should

still be considered in view of alternatives, such as local

processing on the mobile device itself or cloud offloading.

To conclude this section, we have seen that our proposed

approach of upgrading existing urban infrastructures to host

cloudlets is feasible in practice and provides a high coverage

to mobile users, even if only a subset of the infrastructure is

upgraded. In the future, mobile applications might require

more sophisticated computations that require local processing

at the edge. We believe that a city-scale cloudlet deployment

will be able to fill this gap.

VI. PLACEMENT STRATEGIES FOR URBAN CLOUDLETS

In the previous sections, we analyzed how well urban

cloudlets can cover an area or mobile users, given that only a

subset of access points is upgraded to host cloudlets. Now, we

turn our attention to the question which access points should

be upgraded to host cloudlets. We consider the access points

to be heterogeneous in terms of costs, communication ranges,



and resources they provide. This heterogeneity refers both to

difference between the types of access points as well as within

one type of access point. This is motivated by the differences

in the underlying infrastructures and business models, as

motivated in Section III-A. It is obvious that randomly

selecting a certain percentage of access points—as we have

done for the general coverage analysis in Section V—can lead

to suboptimal results, either regarding the incurred costs or

the QoS from a user’s perspective. On the other hand, solving

this problem in an optimal way is computationally hard and

practically unfeasible, especially in dynamic edge computing

environments, where available computing resources fluctuate.

In this section, we will therefore present an algorithm for the

cloudlet placement on urban infrastructures that is both cost-

aware and at the same time tries to maximize the quality of

service. We first define our model, then present and compare

our approach with random placement as well as a placement

strategy that greedily tries to minimize the overall costs.

A. The Model

We consider a set AP = {ap1, . . . apn} of n access

points located in a 2-dimensional plane. Each access point

ap ∈ AP is of one of the types ∈ {celluar, router, lamp}
and has a unit-disk communication range of radius rap.

If an access point is chosen to be upgraded to host a

cloudlet, it can provide a certain amount of resources Rap,

which for instance can be modeled as the available CPU

cycles of the cloudlet hardware. Using computing resources

incurs a variable cost of CV arap per unit of resources.

In addition to the variable costs, fixed costs CFixap have

to be paid when an access point is upgraded. This could

either be the cost of upgrading hardware or fixed costs for

running the cloudlet for a certain amount of time, e.g., the

costs for energy. We introduce a binary decision variable

xap ∈ {0, 1} to model the placement of cloudlets on access

points. xap = 1 if a cloudlet is placed on access point

ap ∈ AP , 0 otherwise. From the mobility traces, we have

m user locations, denoted as U = {u1, . . . , um}. Each user

location requests a workload wu. We further define d(ap, u)
as the Euclidean distance between an access point ap and

a user location u. We characterize the association of a user

to a cloudlet-enabled access point by yu,ap ∈ {0, 1}. If user

u offloads the computations to a cloudlet present at access

point ap, yu,ap = 1, otherwise yu,ap = 0.

A placement P is therefore defined as the assignment

of the variables xap and yu,ap. Placements are subject to a

number of constraints. First, we consider that we want to

make placement decisions for K cloudlets, i.e.,

∑
ap∈AP

xap = K,K ∈ N. (1)

Obviously, users can only make use of a cloudlet at an access

point if they are within its communication range and the

Table V
NOTATION

AP Set of access points

n Total number of access points

Rap Available resources after upgrading the access point

rap Radius of the unit-disk communication range

CFixap Fixed cost for deploying a cloudlet at the access point

CV arap Variable cost for using one unit of resources

xap Binary decision variable to indicate cloudlet deployment

U Set of user locations

m Total number of user locations

wu Workload requested at user location

d(ap, u) Euclidean distance between access point and user

yu,ap Binary decision variable for user-cloudlet assignment

access point has been equipped with a cloudlet, hence,

d(ap, u) ≤ rap∀u ∈ U, ∀ap ∈ AP : yu,ap = 1 (2)

and

xap ≥ yu,ap∀u ∈ U, ∀ap ∈ AP. (3)

We further assume that user demands cannot be fragmented,

i.e., all workload demand from one user is offloaded to

exactly one cloudlet and cannot be divided:
∑

ap∈AP

yu,ap = 1, ∀u ∈ U. (4)

Placement decisions also need to consider the resource

constraints on the cloudlets. Because user-to-cloudlet assign-

ments should not overload the cloudlet, we have
∑
u∈U

yu,ap · wu ≤ Rap, ∀ap ∈ AP. (5)

To evaluate how good a placement decision is, we take

into account two factors: the costs and the overall quality of

service. Costs include the fixed cost for deploying a cloudlet

as well as the variable cost for each unit of resources that

is offloaded. Hence, the total costs of a placement can be

formulated as

C(P ) =
∑

ap∈AP

CFixap · xap

︸ ︷︷ ︸
Fixed Costs

+

∑
ap∈AP

∑
u∈U

yu,ap · CV arap · wu

︸ ︷︷ ︸
V ariable Costs

.
(6)

We model the quality of service as the ratio of how much

user demand can be offloaded to the cloudlets, i.e.,

Q(P ) =

∑
u∈U

∑
ap∈AP yu,ap

m
. (7)

Compared with our previously introduced definitions of

coverage (see Section III-B), this is a variant of point

coverage. However, for a point to be covered, in addition

to the connectivity to a cloudlet, its computational demands

must be met, i.e., there must be a cloudlet with enough

(remaining) computing resources in range. Referring to the



results obtained from the comparison of point, path, and time

coverage in Section V, we argue that this notion of point

coverage will in practice also lead to users being connected

to that cloudlet for the entire time along their path. Given

these definitions, the overall utility of a placement is defined

as

Utility(P ) = α · max(C(P ))− C(P )

max(C(P ))−min(C(P ))
+

(1− α) ·Q(P ),

(8)

where α ∈ [0, 1] is a parameter to trade costs against quality

of service. Note that we negate the cost factor C(P ) in

order to represent lower costs by a higher utility value. Since

minC(P ) and maxC(P ) are constant, this part of the utility

function is still linear. Table V summarizes the notation of

our model.

B. Problem Statement

Given the above definitions, we state the cloudlet place-

ment problem as follows. Place K cloudlets on access points

such that

max Utility(P )

s.t. (1), (2), (3), (4), (5)

xap ∈ {0, 1},
yu,ap ∈ {0, 1}, ∀ap ∈ AP, ∀u ∈ U.

Our goal is therefore to maximize the offloading ratio, i.e.,

the number of users that will be able to offload computations

to cloudlets while making cost-aware placement decisions

for cloudlets on the access points. This problem can be

modeled as a variant of the facility location or k-Median
problem, both of which have been proven to be NP-hard [75].

In practice, this means we cannot find an optimal solution

in a reasonable amount of time. However, in view of the

dynamics in a real-city network, e.g., due to user mobility

or changes in demands, we need to be able to quickly adapt

to those changes.

C. The Approach

To make the cloudlet placement problem more tractable,

we propose GSCORE (Grid-Score), a cloudlet placement

algorithm described in this section. Instead of considering

single user requests or make a decision on a global scale, the

algorithm performs cloudlet placements locally. We divide the

area to be covered by cloudlets into grids G = {g1, . . . , gj}
with uniform edge length gs. Based on the user locations

and the request size of each user, we can then compute the

total size of the requests per grid wg =
∑

wu for every

user u located in that grid. In reality, the request sizes of

the grids might be estimated by measurements from network

providers that are able to estimate the number of users and

the offloading traffic they generate. Our algorithm operates

solely on the knowledge of the individual grid cells with their

associated grid sizes. For each grid cell, a local decision is

made to place a certain number of cloudlets on the available

access points in that grid. First, we make a decision on

where to place cloudlets and later assign the individual user

requests to the cloudlets to evaluate the system utility as

defined earlier.

Cloudlet Placement: The pseudocode of GSCORE is shown

in Algorithm 1. Its main loop iterates over the grid cells

until the desired number K of cloudlets have been placed

(lines 1-27). The cells are traversed in decreasing order of

requests sizes, i.e., we begin with the cells that have the

highest request sizes. Next, for each of the access points

available in that cell, a score is computed (lines 4-12).

Algorithm 1 GSCORE

1: while
∑n

i=0 xi < K do
2: gh ← G.getHighestRequestSize()
3: S = ∅
4: for ap ∈ AP located in gh do
5: cr ← CFixap+CV arap·Rap

Rap

6: factorarea ← |A(ap)∩A(gh)|
|A(gh)|

7: factorcapacity ← Rap

wgh

8: factorcr ← max(cr)−cr
max(cr)−min(cr)

9: factorQoS ← factorarea+factorcapacity

2

10: scoreap ← α · factorcr + (1− α) · factorQoS

11: S ← S ∪ {scoreap}
12: end for
13: numToP lace ← 	ln(wgh

w̄g
) + ln(gs) +

K
|G|


14: placedCap ← 0
15: for k ∈ [0, numToP lace] do
16: scoreap ← max(S)
17: xap = 1
18: placedCap ← placedCap+Rap

19: S ← S \ {scoreap}
20: AP ← AP \ {ap}
21: end for
22: if (wgh − placedCap) > 2 · w̄g then
23: wgh ← wgh − (placedCap · ln(wgh))
24: else
25: wgh ← wgh − placedCap
26: end if
27: end while

The score reflects the tradeoff between cost considera-

tions and quality of service. The cost factor factorcr =
max(cr)−cr

max(cr)−min(cr) (line 8) normalizes the costs-to-resource

ratio of the access point; hence, access points with higher re-

sources at the same costs will be ranked higher. To normalize

this metric, we assume an upper bound in the sense that each

access point’s capacity will be fully utilized. The factor for

the quality of service factorQoS =
factorarea+factorcapacity

2



reflects how much of the grid area is covered by the

communication range and what ratio of the grid’s request

demands can be satisfied by that access point. Note that we

again only consider these factors on a grid cell level, i.e.,

a router with a larger communication range that covers an

entire cell might have the same value for factorarea as a cell

tower, even though the latter in reality spans over multiple

grid cells. Similarly, at this point, we completely disregard

whether there will actually be users within the range of this

access point. Doing so would greatly increase the complexity

since it would require iterating over every individual data

point. By selecting appropriate grid sizes in the evaluation,

we will show that this approach is a reasonable approximation.

Both factors are weighted according to the desired α for the

calculation of the access point score (line 10).

From our raw user data, we could observe that the number

of users per grid—and hence the generated request sizes—

are not uniformly distributed. Instead, we see few grid cells

with substantially higher request sizes than the average. This

will result in many access points being placed in those grids,

even if they are not enough to satisfy the total user demands

of that grid. At the same time, this reduces the number of

access points that could be placed to easily satisfy a greater

offloading ratio in other grids. To mitigate this behavior, we

compute the number of cloudlets to be placed in a grid cell,

as shown in line 13. This formula normalizes the impact of

grids with exceptionally high request sizes by taking ln(
wgh

w̄g
).

In addition, we also factor in the size of the grid (in the sense

that we allow more cloudlets to be placed in larger grids)

and the ratio of K to the number of grid cells. According

to this function, the according number of cloudlets with the

highest score will be added to the grid cell (lines 15-21).

After having placed the corresponding number of cloudlets in

a grid cell, its workload demand is adjusted in the following

way: We assume each cloudlet will be used to full capacity.

In addition, we again take into account the characteristics of

the request size distribution to ensure that grids with lesser

workload will also be iterated over. Hence, if the workload

of a grid remains larger than two times the average workload,

we adjust the new workload request estimation of the grid

by multiplying the placed capacity of the cloudlets with the

logarithm of the original request demand (line 23).

User-to-Cloudlet Assignment: To compute the utility value

(see Equation (8)), we now assign the requests of individual

users with the following strategy. Since the fixed costs have

already been determined by the placement strategy, for each

request, we choose the cloudlet with the lowest variable costs

per resource unit that is within the range of the user.

D. Evaluation

We now compare our proposed approach with the following

alternative strategies for cloudlet placement:

Random (RND): This approach randomly selects K
access points where cloudlets are placed on. Obviously, the

Table VI
EVALUATION PARAMETERS

Cellular Routers Street Lamps
Base Stations

Communication random random (10,70) random (20,80)
range (m) (300,1000)

Resources random random(5,100) random(5,50)
(2000,5000)

Fixed cost random random(1,100) 100
(1000, 10 000)

Variable cost random(5,10) random(1,5) 1

(a) Grid size of 50m (b) Grid size of 100m

Figure 7. Grid sizes for evaluation.

distribution of the K selected access points with respect to

their type will follow the one of the dataset, meaning that we

will have few expensive locations (i.e., cell towers), and a

high number of routers and street lamps. They will however

not necessarily be located in areas where the coverage has

a high impact on the QoS, i.e., areas with a large number

of users. Instead, cloudlets are likely to be spread evenly

throughout the city.

Greedy-Cost-Aware (GC): This strategy tries to minimize

the overall costs by iteratively selecting the access points

with the lowest overall costs, defined as the sum of fixed

and variable costs, assuming the placed cloudlet will be

used to full capacity. Similar to RND, this will disregard

the geographic distribution of user workloads and might

penalize choices that have higher costs but a good costs-to-

resource ratio. We therefore expect this approach to perform

worse than RND in terms of the delivered quality of service.

However, for very cost-restricted deployment models, this

will lead to the insight of how much offloading is possible.

1) Setup: We built a simulation tool in Ruby to eval-

uate our placement strategy. The base data is stored in

a PostgreSQL database with the spatial extender PostGIS

enabled. We use the values listed in Table VI as our

experimental settings for the modeling of access point

attributes. The values reflect the heterogeneity of our access

point infrastructure and their deployment characteristics as

described in Section III. It is important to note that even

within one type of access point, we consider the values for

the communication range, resources, and costs to be variable.
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Figure 8. Placement evaluation for a grid size of 50m.
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Figure 9. Placement evaluation for a grid size of 100m.

The only exception are the costs for using street lamps,

which we assume to be fixed because they are operated by a

single stakeholder, the municipality. To model the workload

that users want to offload, we take the data points from

all three datasets. Even though they were captured over a

period of time, for the evaluation, we assume they jointly

represent demand spots of mobile users throughout the city at

a single point in time. Each data point is assigned a requested

workload of 1 or 2 units. We conduct our experiments with

two different grid sizes of 50 meters and 100 meters for their

edge lengths. Heatmaps of these two setups that visualize the

total number of requests per grids are shown in Figures 7(a)

and 7(b). Darker red squares represent grid cells with higher

demands, while blue ones are areas with lower demands.

2) Results: Figures 8 and 9 display the results of our place-

ment strategy for grid sizes of 50m and 100m, respectively.

For each grid size, we evaluate the placement strategies with

values 0.2, 0.5, and 0.8 for α. Recall that α = 0.5 equally

weighs costs and quality of service for the overall utility,

while lower values put more emphasis on the quality of

service and vice-versa. For K, we use values from 1000 to

30 000. Besides the overall utility, the plots include the two

components of the utility function, i.e., values for the costs

and QoS. As defined in Equation (8), higher values denote

lower costs and better QoS. Overall, we see that our proposed

GSCORE algorithm surpasses RND and GC in each evaluated

scenario for both the overall utility and the QoS part of the

utility function. Even though barely visible in the graphs,

GSCORE leads to a very small increase in the cost factor (in

most cases around 1-2%) compared to the other strategies.

However, the gain in terms of QoS when using GSCORE
to place cloudlets is much higher. Take as an example the

results for K = 10 000 and α = 0.2. Irrespective of the

grid size, GSCORE achieves a QoS value that is three times

higher compared to GC. Therefore, the essential benefit that

GSCORE provides is that it trades a small fraction of cost

increase for a much greater increase in the quality of service.

Consequently, for smaller values of α, the gain in the overall

utility when using GSCORE is higher. Since it takes into

account the values of α for the scoring, GSCORE can be

tuned to adapt to different deployment and business models

for cloudlets.

Regarding the different grid sizes, we observe only a

small difference between grid sizes of 50m and 100m. For a

smaller grid size, GSCORE gains a little in the overall utility;

however, smaller grid sizes result in iterating over more grids,

and hence, a greater computational overhead to make the

placement decision. We leave the exploration of this tradeoff

for future work and plan to further investigate how other

grid sizes perform.

As we can also see, for larger values of K, the difference

between GSCORE and RND becomes smaller because it is

more likely that there is a great overlap in the two chosen

subsets of access points. This can be seen in the result

plots if we look at K values of 30 000 and compare this

value with the total number of access points in the inner city
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Figure 10. Choosing K by quality-to-cost ratio.

boundary (37 648). The results for small values of K = 1000
behave similarly. In that case, there are so few cloudlets

available that only a small fraction of all user demands can

be met, irrespective of the employed placement strategy.

GSCORE performs best for input sizes between K = 5000
and K = 20 000 or in other words, between 13% and

53% of all available access points. We therefore believe

this placement strategy can be viable in practice, since in a

real-world deployment, one would neither upgrade very few

(because there would be no substantial gain for users) nor

nearly all access points (because of practical limitations in

terms of costs). Furthermore, we expect GSCORE to perform

even better compared to RND if the environment is more

heterogeneous than in our evaluation setup, e.g., if cloudlets

on street lamps are owned by different operators and therefore

have different costs associated with them. Note that our notion

of placing K cloudlets can easily be adapted to match other

constraints, such as the total costs. Instead of K denoting

the number of access points, K could for example model

the maximum allowed fixed costs of the deployment.

To further investigate practical insights on how to choose a

suitable K, we analyze the quality-to-cost ratio for different

values of K. Instead of using the normalized utility (see

Equation (8)), we consider the absolute costs C(P ) and

for the quality of service, we weight the absolute workload

values by our QoS part of the utility. Hence, the ratio is given

as
Q(P )·∑wu

C(P ) . Figure 10 plots the value for this ratio for

different values of K. For this example, we use the placement

decision that GSCORE outputs for a grid size of 100m and

the same parameters as described before. As alpha, we use

0.2 and 0.5. We omit α = 0.8 because this shows a very

clear trend towards very low values of K. From the plot, we

can observe that if we use the absolute costs and workloads

that will be offloaded as the metric, there is a sweet spot for

the value of K at 10 000. Very low values of K are not a

good choice since we need a certain threshold of cloudlets

deployed to be able to cover a certain city area (regardless

of the available or used resources). On the other hand, we

see that for very large numbers of cloudlets, the additional

costs incurred surpass the gain in quality of service. For the

practical deployment, we can therefore conclude that medium-

sized values of K are most beneficial. It is worth noticing

that these are also the ranges of K where our proposed

algorithm performs best.

VII. DISCUSSION AND FUTURE WORK

In this paper, we have examined the placement of different

types of cloudlets in an urban space using existing access

point infrastructures, namely, cell towers, routers, and street

lamps. We first studied the coverage that we can achieve by

selecting only a subset of all access points to be upgraded. We

did so by first considering spatial coverage only and then used

mobility traces to evaluate point, path, and time coverage.

The results of this analysis enable different stakeholders (e.g.,

municipalities and network operators) to estimate the number

of cloudlets required to achieve a certain degree of coverage.

As a second contribution, we presented GSCORE, a placement

strategy that operates on local grids and is able to trade a

small portion of cost savings against a substantially higher

gain in the number of users that can offload. Furthermore,

this tradeoff can be adjusted to model different underlying

business and incentives models. We showed that this strategy

is overall more beneficial than randomly upgrading a certain

number of access points or choosing the ones with the lowest

costs.

This work opens up some future research directions. While

our placement strategy considers cloudlet heterogeneity in

the domain of costs, resources, and communication ranges,

we did not consider the available bandwidth and latency.

Depending on the user location, the available bandwidth and

latency to one particular cloudlet might vary significantly.

In future deployments, we could envision that users collect

measurements of network conditions and this data to be

included as a factor in our QoS model. Our algorithm

performs a static placement decision. In view of changes

in user workload, user mobility, or the availability of the

cloudlets themselves, future work should investigate the

adaptation of cloudlet placements at runtime. Furthermore,

besides user mobility, data mobility is another factor to be

considered in future work, especially for the user-to-cloudlet

assignment. Taking user and data mobility into account might

prevent unnecessary or costly migrations of services.

Our evaluation has shown that a cost-based placement

leads to a lower quality of service and overall lower

utility compared to a random or coverage-based placement

approach. Therefore, a cost-based placement also leads to

lower network traffic savings on the part of the infrastructure

provider. Because of the complex interplay between different

stakeholders, new business models and incentive mechanisms

are required for a joint optimization.
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and B. Koldehofe, “Mobile fog: a programming model
for large-scale applications on the internet of things,” in
Proceedings of the 2nd ACM Workshop on Mobile cloud
computing (MCC), 2013, pp. 15–20.

[20] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V.
Vasilakos, “Fog Computing for Sustainable Smart Cities: A
Survey,” ACM Computing Surveys, vol. 50, no. 3, pp. 32:1–
32:43, 2017.

[21] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck,
“Mobile edge computing potential in making cities smarter,”
IEEE Communications Magazine, vol. 55, no. 3, pp. 38–43,
2017.

[22] J. M. Schleicher, M. Vögler, S. Dustdar, and C. Inzinger,
“Enabling a smart city application ecosystem: Requirements
and architectural aspects,” IEEE Internet Computing, vol. 20,
no. 2, pp. 58–65, 2016.

[23] A. Zanella, L. Vangelista, N. Bui, A. Castellani, and M. Zorzi,
“Internet of Things for Smart Cities,” IEEE Internet of Things
Journal, vol. 1, no. 1, pp. 22–32, 2014.

[24] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic execution between mobile device and
cloud,” in Proceedings of the 6th Conference on Computer
Systems, ser. EuroSys ’11. ACM, 2011, pp. 301–314.

[25] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An
updated performance comparison of virtual machines and linux
containers,” in Proceedings of the 2015 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), 2015, pp. 171–172.
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