A Learning-based Framework for Optimizing Service Migration
in Mobile Edge Clouds

Florian Brandherm Lin Wang Max Mithlhauser
TU Darmstadt VU Amsterdam TU Darmstadt
Darmstadt, Germany Amsterdam, The Netherlands Darmstadt, Germany
brandherm@tk.tu-darmstadt.de TU Darmstadt max@tk.tu-darmstadt.de

Darmstadt, Germany
L.wang@vu.nl

Abstract

Mobile edge computing is gaining traction due to its ability to
deliver ultra-low-latency services for mobile applications. This is
achieved through a federation of edge clouds in close proximity
of users. However, the intrinsic mobility of users brings a high
level of dynamics to the edge environment, calling for sophisticated
service migration management across the edge clouds. Previous
solutions for edge service placement/migration are architecture-
specific, centralized, or are based on restricted cost models. These
limitations leave doubts about the practicality of these approaches
due to the lack of a standardized reference model for edge clouds. In
this paper, we propose a general framework for optimizing edge ser-
vice migration based on reinforcement learning techniques. Using
our framework, edge service migration strategies can be learned
with respect to a large variety of optimization goals. Moreover, our
learning-based algorithm is agnostic to the underlying architec-
ture and resource constraints. Preliminary results show that our
model-free learning-based approach can compete with model-based
baselines and adapt to different objectives.

CCS Concepts + Networks — In-network processing; Cloud
computing; In-network processing; Cloud computing; + Com-
puting methodologies — Reinforcement learning; Reinforcement
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1 Introduction

Mobile cloud computing enables applications on mobile devices
that exceed their capabilities in terms of computation and storage.
It also allows mobile devices to save energy by offloading energy-
intensive computational tasks. Typically, mobile cloud computing
is implemented through centralized data centers [25]. Despite their
cost-effectiveness, those centralized data centers are usually far
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Figure 1. Service migration problem in a typical mobile edge cloud
environment.

away from the end users, which denies the benefits from mobile
cloud computing. It prohibits mobile applications that need to trans-
fer large amounts of data or are subject to stringent latency require-
ments [25, 21, 11]. Examples for such applications are gaming-as-
a-service [8], video streaming/processing [18], virtual/augmented
reality [4] or autonomous driving [30].

Locating cloud-infrastructure closer to the user equipment has
the potential to reduce latency and backhaul traffic to a degree
that enables the aforementioned applications. Following this idea,
prominent architectures have been proposed under the names of
mobile edge computing [1], cloudlets [19], or fog computing [16,
6]. In contrast to centralized cloud architectures, user mobility in
mobile edge computing poses new challenges to resource man-
agement. More specifically, to ensure service quality, the service
placement needs to be updated dynamically by service migrations
to accommodate for changing user locations.

The present article focuses on the placement and migration of
stateful services to deliver reliable low-latency- or high-throughput-
services to mobile users. An example of the migration problem is
given in Figure 1. Any user movement that results in an increased
distance to its services degrades the latency and increases transmis-
sion costs for the network operator. Optimal service placement and
migration are hard problems since the cost and latency impact of
migrations and transmissions must be accounted for while avoid-
ing congestion of limited resources in mobile edge clouds. While
some early attempts have been made recently, existing proposals
are typically restricted to specific architectures or over-simplified
cost models—mainly due to tractability considerations—and thus
are not generally applicable. In contrast, a data-driven, architecture-
agnostic approach has the potential to be trained and deployed
rapidly. Changes in the underlying architecture or cost model can
be adopted without the need to develop new algorithms. In addition,
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the majority of previous approaches are centralized, also raising
practicality and scalability concerns.

To overcome these limitations, we adopt an alternative approach,
where we do not make any assumptions on the underlying ar-
chitecture and cost model. In particular, we make the following
contributions in this paper:

1. We present a general framework that can produce efficient
service migration policies that can accommodate a large
variety of objectives, and is largely independent of system
architectures.

2. We map the adaptive service migration problem in distributed
mobile edge clouds to a multi-agent reinforcement learning
task and show that a policy can be learned using a singe-
agent technique.

3. We carry out a preliminary evaluation and demonstrate
that comparable performance to baseline approaches can
be achieved by the learned policy, despite the fact that our
policy can only observe local features. In contrast, the base-
lines use a model of the entire network and cost function.

The paper is organized as follows. Section 2 summarizes recent
developments in edge service/placement and machine learning
in networks. Section 3 introduces our system model and Section
4 describes the policy learning. Section 5 presents preliminary
evaluation results. Section 6 discusses the limitations and future
work. Section 7 concludes the paper.

2 Related Work
2.1 Edge Service Placement/Migration

As a specific challenge in mobile edge computing, service place-
ment and migration has been widely studied in recent years [28,
23,29, 26, 7, 27, 17]. The model by Urgaonkar et al. considers state-
less services and includes heterogeneous costs [23]. It provides
a strategy for request scheduling for multiple applications, given
limited service rates, as well as the possibility to route requests
to a backend cloud. The problem of stateful service migration is
modeled by S. Wang et al. as an optimal decision problem that deter-
mines if a service should be migrated to its user location, exploiting
the regular, hexagonal placement of base stations. The goal is to
minimize the combined distance-based transmission and migration
costs [28]. Ouyang et al. present two approximation algorithms
to minimize total latency given a migration cost budget [17]. A
cost prediction function is exploited by S. Wang et al. to search
for cost-minimizing service placement sequences [29]. However,
the authors don’t evaluate their method with practical prediction
methods. Resource allocation for mobile edge clouds is compre-
hensively studied by L. Wang et al. where service placement and
migration are considered under specific cost models and an efficient
online resource allocation algorithm is proposed, being agnostic
to the mobility pattern of users [26]. He et al. explore the joint
service placement and request scheduling under both sharable and
unsharable resources [7]. Service migration is however omitted
from their model. L. Wang et al. study the service placement prob-
lem specifically for virtual reality applications where they assume
a polynomial performance interference model for service coloca-
tion. Service re-placement with user mobility is covered only by a
simple heuristic and migration costs are not included in the opti-
mization [27]. All of the above works suffer from one or more of the
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following limitations: being centralized, being specific to certain
architectures, or assuming simplifying cost models.

2.2 Machine Learning for Networks

Machine learning techniques have been successfully applied in
many of the control or optimization problems in the networking
field, including cluster scheduling [14, 5], adaptive video streaming
[13], congestion control [9], and traffic engineering [24, 3]. Mao
et al. present DeepRM, an adaptive multi-resource cluster sched-
uling algorithm where a visual representation of cluster resources
and jobs is fed to a deep reinforcement learning model [14]. More
recently, Mao et al. introduced Decima, a reinforcement-learning-
based model to schedule jobs that consist of a DAG containing a
series of dependent tasks. Liu et al. present an approach for resource
allocation and power management in cloud computing where the
scheduling problem is divided into a hierarchy of 2 reinforcement
learning problems. While the above scheduling and placement prob-
lems share some common aspects with the edge-cloud migration
problem, they often expect an estimate of the job durations, and usu-
ally have no requirement to migrate tasks after they are placed. In
contrast, stateful edge services may last as long as they are required
and are affected by user mobility.

Reinforcement learning has also been applied to some traditional
networking problems such as adaptive bitrate for video streams,
congestion control, and traffic engineering. Mao et al. show that
deep reinforcement learning can be used to improve the quality
of bitrate control in adaptive video streaming [13]. Jay et al. make
a preliminary attempt on how to better control the sending rate
of TCP flows to achieve higher throughput or lower latency [9].
In [24] the routing decision is made by a reinforcement learning
agent instead of a routing protocol. In addition to routing, Chen
et al. consider the flow scheduling in data centers and applied a
hybrid approach based on reinforcement learning and local control
heuristics [3].

To the best of our knowledge, we are the first to use reinforce-
ment learning techniques to provide a general approach for the
edge service migration problem.

3 System Model

We consider the problem of service migration across resource-
limited mobile edge clouds as a reaction to user movements. Al-
though our algorithm is independent of the model specifications,
the input state and possible actions are determined by the model.
We present a general mobile edge cloud model with minimal as-
sumptions to facilitate a model-free learning approach.

Wireless network model. Assume we are given a finite set of ac-
cess points B and I, € R? is the location of access point b € 8. An
access point can be any wireless gateway, such as a Wifi router or
a cellular base station.

User mobility model. Denote by b}, € B the access point that user
u is connected to at time ¢. We make no further assumptions about
the user mobility model, except that user speed is bounded.

Service model. Denote by X; C X the set of services that are
present in the system at time t. Let s, € X; denote a service from
user u at time ¢. The placement ¢/’ (s,) : £; — K identifies the
mobile edge cloud to which service s,, is assigned at time ¢.
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Mobile edge cloud model. Denote the finite set of mobile edge
clouds by K. Each edge cloud cloud x € K has a dedicated mem-
ory resource with limited capacity 7™ and current utilization
ra€™m(t). We make no assumption how ri®™(t) is calculated. There
exists a hard limit on memory utilization V¢,0 < ri®™(t) < 7em,
which implies that services cannot be executed if it would cause
the memory utilization to exceed the available memory r2*™. If a
new service is instantiated at an edge cloud with insufficient free
resources, it remains inactive until it is migrated to an edge cloud
with sufficient resources and subsequently activated. An already
active service cannot be migrated to an edge cloud with insufficient
resources. Instead, such migration attempts are rejected. A service
is currently active if it is part of the set Z‘tmtive C 3;. The cost of an
inactive service s, € 3 \ Z3¢ is highly dependent on the specific
application and cost model. While the cost can be very high for
latency-bound applications, throughput-bound applications might
be more tolerant. One might also imagine applications that utilize
unused capacities, where the inactivity penalty could be very low.

4 Learning Service Migration Policies

The architecture and cost model of a mobile edge cloud system are
often non-stationary and likely to change after deployment. For
example, an edge-cloud provider may want to change its pricing
model or extend its network with a new type of resource. To ac-
count for such flexibility, we propose a data-driven approach to
quickly adapt the migration strategy without the need to manually
re-engineer a new optimal migration algorithm.

Global RL problem. To adapt to different architectures and cost
models, we propose to exploit reinforcement learning (RL) [20] to
learn a cost-minimizing service migration strategy through trial and
error. The service migration problem can be formulated as a Markov
Decision Process (S, A, T, R). A stochastic policy 7g(als) chooses
an action a € A based on the current state s € S. A stochastic
transition 7 (s’[s, a) determines the following state s’, given only
the current state s and action a. The immediate value of choosing
action a as a response to state s is measured by a stochastic reward
function R(r|s, a). The goal in RL is to obtain a policy that maxi-
mizes the long-term expected discounted reward E; [Z‘i"’zo yirj+i],
where 0 < y < 1is a discount factor that determines the influence
of future rewards.

In a global mobile edge cloud model, the state s consists of the
entire observable information at the time of a migration decision,
which includes the state of all services and edge clouds in the
system. An action is a migration a5 € A, which means a ser-
vice s € 2(;) should be migrated to edge cloud . The transition
function 7 (s’[s, a) is implemented by the present edge cloud ar-
chitecture. The reward r = R(r|s, a) = —C(s, a) is the negative cost
and depends on the current services and edge clouds.

Learning a policy for this global service migration problem is
not scalable to large numbers of edge clouds and services. The
state-action-space is the set of all possible placement transitions of
all possible placements of all possible services. Known as the curse
of dimensionality, this exponential growth quickly renders learning
a global solution intractable. A practical limitation is that every
decision and every reward computation would require to gather
the entire system state, requiring large amounts of bandwidth and
time.
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Local RL problem. To alleviate these issues, we propose to learn an
approximate solution by only considering the local region of each
migration decision. This is motivated by the following observations:

1. migrations are usually only sensible over short distances
because the speed of the users is limited

2. placement decisions in far away regions are of little conse-
quence to each other.

We reformulate the problem as a competitive multi-agent learning
problem, where each service aims to optimize its reward by deciding
where to migrate. Therefore, the reward must be formulated for a
single service, based on its observable region N, C %K, which is
predefined (e.g. K-nearest neighbors).

As local migration decisions are only based on a limited region
around the service in question, the state-space is greatly reduced.
The state consists only of the state of the || Ni|| clouds in the ob-
servable region. Similarly, the action space is greatly reduced by
only allowing migrations to edge clouds within the observable re-
gion. Our service-centric formulation further removes the decision
which services to migrate. Thus, the action space merely consists
of the || N« || possible target clouds in the observable region plus
a no-migration action. Moreover, since only local information is
needed, individual decisions can be made locally and much faster
than in a centralized system, even if part of the network fails.

Whenever a service is created or migrated, a migration decision is
triggered. Additionally, a migration decision is triggered if the time
since the last migration decision exceeds a certain threshold. When
a migration decision occurs, first, the state of the local edge cloud
neighborhood Ny is gathered. Then, the policy my(als) decides the
optimal action, which can either be a migration to one of the edge
clouds in N or a no-migration action. Afterwards, an immediate
reward for this service is computed.

Learning method. While the task is formulated as a multi-agent
problem, such tasks can also be learned using single-agent algo-
rithms [22]. Although they loose most of their theoretical guaran-
tees in a multi-agent setting, they are often applied in practice [2].
We apply deep Q-learning with a target network [15]. It employs a
deep function approximator to learn the state-action value Q(s, a)
that predicts the expected long-term reward of taking action a in
state s. An e-greedy policy (we chose € = 0.1 for our experiments)

7(als) = { maxg, Q(s, a) w%th P i 1-¢
a~U(a) with p=e¢

chooses mostly the exploitative action with the highest predicted
value. Sometimes, it explores the action space by selecting a ran-
dom action from the uniform distribution U(a) over all possible
actions. This randomization is necessary to collect new experiences
for learning. We use a target network as described by Mnih et al.
[15] to to alleviate some of the the detrimental effects of the non-
stationary learning problem that arises from the multi-agent setting.
We employ a multi-task paradigm, where a single policy general-
izes over all services, which means that the policy parameters 0
are shared globally. This accelerates learning and leads to a more
general policy since all services share their experiences.

The choice of deep Q-learning has the added advantage that
it is capable of off-policy learning, which means it can learn by
observing the actions of another algorithm.
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O Base station @ Base station with edge cloud

O Internal node B Internal node with edge cloud
Figure 2. The randomly generated network architecture for mobile
edge computing that we used in our evaluation.

5 Evaluation

Our simulated network architecture consists of 50 nodes (30 internal
nodes and 20 base stations) which are randomly placed in a unit
square. Each edge cloud is placed at a random node and can host
at most 3 services. The nodes are first connected by a minimum
spanning tree and additional connections are established between
every node and its 4 nearest neighbors (euclidean distance). The
resulting irregular network architecture is challenging for edge
cloud migration algorithms as no regularities can be exploited. We
depicted the network architecture we used in our evaluation in
Figure 2. 40 users are simulated with a linear movement model,
where the goal position is randomly selected within the unit square
upon arrival at the previous goal. Every user is connected to its
closest base station and is associated with one service. All users and
services are created at the beginning of the simulation. Whenever a
user connects to a new base station, the placement of the associated
service is re-evaluated and a migration decision is triggered. A
migration decision is also triggered, whenever the time since the
last migration decision of a service exceeds a constant interval.

Every edge cloud has a local neighborhood Ny containing the
10 nearest (topology-wise) edge clouds in the network. The observ-
able state for the migration decision of a service s, at edge cloud
k comprises the position, available memory 7-“™ and currently
used memory ™ of all edge clouds in k¥ U N, as well as the
user’s base station position, the previous cloud position, and the
memory requirements of all services at the current edge cloud .
While the state contains no aspects of the mobility model, a rough
prediction can be learned implicitly from the base station and cloud
positions. The state-action value function Q(s, a) is approximated
by a feed-forward neural network with 3 layers of 20 neurons. These
parameters were determined by trial and error. For exploration, 10%
of all actions are random (e = 0.1).

We evaluated our algorithm with a latency-minimization objec-
tive where the reward function R;(sy) = —A(sy) is the negative
latency A(sy), as determined by the number of hops between a
service s, and its user u.

5.1 Results

Latency-based reward function. We chose to evaluate our method
with a latency-based objective because it is intuitive and good
baselines can be implemented straightforwardly. Figure 3 depicts
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Figure 3. Latency comparison of R;.
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Figure 4. Reward comparison of Ry.

the average latencies and its variances of our method (blue) and
compares it to two baseline strategies. The red line represents a
never-migrate strategy. Drawn in black is a baseline strategy that
greedily migrates services to the closest edge cloud in its observable
neighborhood that has available memory resources. Note that this
requires latency measurements which the learned strategy —being
completely model-free— does not have. Despite the lack of direct
latency measurements, our learned model is able to approach the
performance of this baseline. This demonstrates that our method
can learn good strategies without any knowledge about the cost
model or edge cloud architecture. We also depict the performance
of a global version of the always-migrate-strategy to show the loss
in performance that is introduced by considering only a local view.
However, this strategy disregards the communication overhead
that is introduced by a centralized system that requires knowledge
about the entire network.

Complex reward function. We also evaluated our system using
another, more complex reward function to demonstrate that our
algorithm can adapt to different cost models. The reward function
Ra(susx) = —A(su) — Cmigration(Su, ) includes a migration cost
Cigration(Su, k) of 1 if s, was migrated.

As depicted in Figure 4, which graphs the average rewards over
time, the used learning method will improve upon the baseline
performance of never migrating. The fact that our learning-based
method can reach the performance of the hand-implemented base-
line shows the potential of our learning-based method, considering
that 10% of its actions are random. However, the performance dur-
ing the learning process fluctuates considerably and convergence
is comparatively slow. We see room for improvement by achieving
better convergence properties and higher performance through a
true multi-task formulation.
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6 Discussion

Multi-agent problem. The service placement/migration problem
in mobile edge clouds can be naturally treated as a multi-agent
reinforcement learning problem since decisions have to be collabo-
ratively made for all services in the mobile edge clouds. Currently,
we apply a single-agent reinforcement learning approach, relying
on the assumption that the mutual dependencies between services
are low. While this method has already shown promising results,
further investigations into learning techniques for multi-agent prob-
lems are expected and could lead to improved performance and
better convergence.

Distributed learning. While the service migration policy is ex-
ecuted locally on each of the mobile edge clouds, enabling quick
decisions, the training of the policy (for policy improvement) relies
on centralized learning where the experience of all mobile edge
clouds is gathered. A fully distributed approach would be to learn
an individual policy locally on every mobile edge cloud, each spe-
cific to its local environment. One downside is that the generality
can be lost. In other words, the learned policy of one mobile edge
cloud cannot be applied to another with a different environment.
This poses a problem for the dynamic addition of new edge clouds.
To mitigate this issue, we plan to have further investigations into
the domain of multi-task learning.

Local visibility. Another open question is the optimal selection
of the local neighborhood N that is considered visible to the mo-
bile edge cloud. We see potential to reduce the performance gap
between the global and local views by improving the local neighbor-
hood selection. Our current implementation employs the K-nearest
neighbors for each mobile edge cloud. However, we observe a ten-
dency towards a clustering of nearby groups of mobile edge clouds,
which leads to unbalanced clusters. We believe that this could be
improved with more balanced, or even adaptive methods.

More comprehensive evaluation. Further efforts are required for
a thorough evaluation with realistic user mobility patterns and
different cost models. To understand the loss of our distributed
approach, we will conduct a performance comparison between
different neighborhood sizes, including the global view N, = K.
To verify the generality of the proposed framework, we will carry
out tests with different cost models and more heterogeneous system
settings. Also, as indicated by Zheng et al. [31], it is necessary to
examine the learned strategies to gain new insights and understand
when the leaned model is likely to fail.

7 Conclusion

We targeted the adaptive service placement/migration problem in
mobile edge clouds and presented a general framework for produc-
ing service migration strategies based on reinforcement learning
techniques. Unlike existing approaches, the framework can gen-
erate efficient strategies without any knowledge or assumptions
about the edge cloud architecture or cost model. Our preliminary
results show that this approach already has the potential to achieve
similar performance as the model-based baseline strategies. Be-
ing a first attempt, the work can be further refined following the
discussion in the previous section.
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