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Abstract—Complex Event Processing (CEP) is a powerful
paradigm for scalable data management that is employed in
many real-world scenarios such as detecting credit card fraud
in banks. The so-called complex events are expressed using a
specification language that is typically implemented and executed
on a specific runtime system. While the tight coupling of these two
components has been regarded as the key for supporting CEP
at high performance, such dependencies pose several inherent
challenges as follows. (1) Application development atop a CEP
system requires extensive knowledge of how the runtime system
operates, which is typically highly complex in nature. (2) The
specification language dependence requires the need of domain
experts and further restricts and steepens the learning curve for
application developers.

In this paper, we propose CEPLESS, a scalable data manage-
ment system that decouples the specification from the runtime
system by building on the principles of serverless computing.
CEPLESS provides “operator as a service” and offers flexibility
by enabling the development of CEP application in any specifica-
tion language while abstracting away the complexity of the CEP
runtime system. As part of CEPLESS, we designed and evaluated
novel mechanisms for in-memory processing and batching that
enable the stateful processing of CEP operators even under
high rates of ingested events. Our evaluation demonstrates that
CEPLESS can be easily integrated into existing CEP systems like
Apache Flink while attaining similar throughput under high scale
of events (up to 100K events per second) and dynamic operator
update in ˜238 ms.

Index Terms—Complex Event Processing; Serverless comput-
ing; Function as a Service; Internet of Things

I. INTRODUCTION

Complex event processing (CEP) is a data management
paradigm used in a wide range of applications to efficiently
detect interesting event patterns in event streams. Such event
patterns often named complex events, allow applications upon
their detection to adapt to situational changes, such as the
detection of fraud in credit card payments [2] and deriving
tweet trends in Twitter [20]. The strengths of CEP reside in
the simple specification of complex events by means of a query
language and the support for efficient and distributed execution
of the event detection logic.

Therefore, almost every CEP system provides two key
components: (i) the specification language used to define
event patterns and (ii) the runtime system to execute the
event detection logic. Typically, these two components are
highly intertwined. The constructs that describe the event

detection logic are mapped to specific, at times infrastructure
dependent, operator implementations, e.g., the algorithms for
detecting sequences of events in a time-based window. Driven
by preferences of programmers and the underlying systems
infrastructure, many distinct CEP systems have been pro-
posed [20], [8], [3], [11], offering each very specific features
having specific programming models and infrastructures in
mind. For example, classic CEP programming models such as
CQL [6] and SASE [28] are based on SQL-like semantics, and
hence, they also share many limitations of SQL. In particular,
it is very difficult to express complex business logic using
these programming models. Rather in current practices such
as Google Dataflow [4], Millwheel [3], and Flink [8], object-
oriented languages are often used to express complex business
logic in the form of user-defined functions (UDFs). With UDFs
an operator can encapsulate any business logic and hence can
be customized as per user needs.

While the expressiveness is significantly improved with
UDFs, existing CEP system still fall short in several aspects.
One of them is the lack of runtime independence. Although
within each CEP system, queries can be specified in a highly
composable manner or even altered, there is little support
to benefit from reusing development effort from one CEP-
application to another. Simply, rewriting the query specifica-
tion from one system to another is difficult since the way CEP
queries are written has specific execution semantics in mind
which are known to diverge between multiple systems [10].
Furthermore, the support for dynamic updates to the UDFs
is weak. Thus, changes to the implementation of specific
operators or the definition of new functionality often require
a restart and new deployment of the operators [8], which is
problematic in many applications like fraud detection where
system availability is critically important.

In this paper, we aim for a better understanding of how
one can benefit from the diversity of different CEP sys-
tems and enhance their applicability to a wide spectrum of
different infrastructures. By proposing a data management
system that builds on the principles of serverless computing
architecture [15], we aim to enhance the reuse and integration
of CEP operators. Furthermore, by proposing methods for
adding new functionalities and altering the operator logic
at run-time, CEP systems can adapt their processing logic
dependent on the application context as well as the features



of the underlying infrastructure. This way, the diversity of
operator implementations becomes no longer an obstacle in
the development cycle, but a feature that allows CEP systems
to evolve to new requirements and adapt to contextual changes
at run-time.

While existing serverless computing platforms [26], [12]
provide important concepts for the scalable execution of
operator implementations, the extension of CEP systems to
a serverless platform imposes many challenges. First, CEP
operators often perform stateful processing such as detection
of correlated events within a time-based window of the data
stream [10]. Stateful processing is not easily possible in
a serverless model because conventionally each function or
operator execution is required to be isolated and ephemeral in
current platforms. For example in AWS Lambda, the functions
have a limited lifetime of up to 15 minutes, which is the max-
imum among several serverless platforms. For the functions
or operators, it is assumed that the state is not recoverable
across invocations. This stays in contradiction to the lifetime
of a CEP operator which is required to be running as long as
the query is executed [14]. Second, the execution mechanisms
in current CEP systems perform many optimizations such as
flow control, backpressure, and in-memory network buffers to
guarantee low latency and high throughput. Achieving equal
performance in an existing serverless platform is currently
not possible especially due to missing the aforementioned
optimizations and slow communication through storage. For
example, in AWS Lambda [26] it is only possible to commu-
nicate between two lambdas using S3 that is extremely slow
and more expensive than point-to-point networking [17].

Contributions: To overcome these flexibility limitations
of current systems, we propose a new CEP system named
CEPLESS based on the function as a service (FaaS)
concept of serverless computing [26]. In this system,
we provide CEP operators as a service which means
that the operator thus can be specified independently of
the underlying runtime system without any side-effects
to the other system dependent operators running in the
CEP system. The approach enables specification language
independence from the CEP runtime system for the specified
operators, which essentially means that the operators can
be developed in any programming language desired by the
developer. Furthermore, we contribute to CEPLESS with two
mechanisms (i) supporting the stateful processing of events,
which poses a challenge in existing serverless platforms
and (ii) meeting the latency and throughput requirements of
the CEP applications. CEPLESS addresses these challenges
through in-memory queue management, which maintains
the state in an in-memory queue for stateful operators like
time-based windows. Furthermore, the batching mechanism
aids in providing high throughput and low latency in event
processing. Overall, CEPLESS introduces a high degree of
flexibility for CEP systems with the involvement of FaaS
in conjunction with our advanced design. In summary, this
paper makes the following contributions:

1) We propose mechanisms for in-memory queue man-
agement and batching, enabling stateful processing and
ensure correctness and fast delivery of events which are
extremely important for CEP systems.

2) We define a unified programming interface that en-
ables the specification of novel user-defined operators
which are independent of the runtime system and the
specification language of the runtime. Most importantly,
using this interface, the operators can be specified in
any existing programming language and by a single
click, operators can be executed and deployed on any
infrastructure.

3) We introduce a simple user-defined operator interface
that allows the integration of highly diverse CEP runtime
systems into CEPLESS system and benefits from them.

4) We implement and evaluate CEPLESS on two state-of-
the-art CEP systems Apache Flink [8] and CEP-P [21]
using an open and anonymous credit card transaction
dataset [22]. Results show that CEPLESS enables run-
time system independent updates of user-defined opera-
tors while attaining equal throughput and preserving low
latency overhead (˜1.9 ms) under high scale of event
rates of up to 100K events per second.

The rest of the paper is structured as follows. Section II
presents a motivational example that better explains the chal-
lenges. Section III presents the system model introducing
the important system entities. Section IV describes CEPLESS
system design. Section V shows the evaluation. Section VI
discusses the related approaches and Section VII concludes
the paper.

II. PROBLEM STATEMENT USING FRAUD DETECTION
EXAMPLE

A financial institution wants to detect payment frauds in
the real-time credit card transactions of its customers. The
fraud detection algorithm includes complex business logic
such as machine learning models. Typically, this algorithm
is required to be dynamically updated to incorporate newly
observed transaction patterns of fraud. The department has
its proprietary machine learning library that is implemented
in a highly efficient and scalable language such as Rust, or
a proprietary language developed within the department. The
fraud department uses a CEP system for detecting fraud in sub-
second latency and for a high number of users, resulting in a
high scale of incoming transactions to be processed. Current
CEP systems, however, fail to fulfill the above requirements
of expressing a complex business logic as an operator without
any prior knowledge of the CEP runtime system, while using
the language preference of the department for the specification
of complex events.

To better understand the requirements, consider an example
specification of fraud detection in a widely used CEP system
Apache Flink [8] (cf. Figure 1(a)). Here, the highlighted
code refers to the specification of the operator or business logic
that uses a pre-trained machine learning model to detect fraud.
In the example, we have kept the business logic rather simple



DataStream<String> src1 = env.addSource(new 

StreamConsumer <String>(…));
DataStream<String> src2 = env.addSource(new 

StreamConsumer <String>(…));

DataStream stream = src1.join(src2)

DataStream<Boolean> result = stream.filter(new 

FilterFunction<String>() {

@Override public void filter(String value, 

Collector<Boolean> out) { 

ComplexModel model = new ComplexModel(); 

float result = model.predict(value);

if (result > 0.78) {

return true;

} else {

return false;

}

…
result.addSink(new NotifyEmployeeConsumer())); 

package operator;

public class ServerlessFilterOperator implements 

ProcessInterface {

@Override

public Boolean process(String item) {

ComplexModel model = new ComplexModel(); 

float result = model.predict(value);

if (result > 0.78) {

return true;

} else {

return false;

…

DataStream<String> src1 = env.addSource(new StreamConsumer

<String>(…));
DataStream<String> src2 = env.addSource(new StreamConsumer

<String>(…));
DataStream stream = src1.join(src2)

DataStream<Boolean> result = stream.serverless(“serverless-
filter-model”, Boolean.class)

result.addSink(new NotifyEmployeeConsumer())); 

(a)

Serverless CEP Query

Serverless Operator „serverless-filter-model“ (Java example)

.jar

.jar

Query in classical CEP form

(b)

Fig. 1: An example of a simple filter application for fraud detection (a) in traditional CEP systems and (b) in the CEPLESS

system. Here, the serverless-filter-model in (b) is decoupled from the CEP runtime and can be updated on the fly.
for better understandability. We can see that the specification
is tightly coupled to the runtime APIs like DataStream
and FilterFunction. Furthermore, the query operator
filter is ossified and cannot be updated after deployment.

Besides, the language of preference cannot be used due to
missing APIs. This dependency on a specific runtime system
can be problematic because of several reasons: (1) CEP
systems are extremely complex by nature and the respective
department for the development of fraud detection operators
in a financial institution may not have the expertise to deal
with such complex systems. (2) Fraud detection might require
extending the existing runtime with external modules, e.g.,
machine learning libraries which can be very cumbersome in
current CEP systems, if not impossible. (3) Different financial
institutions might have individual specification language pref-
erences for fraud detection operators. This is also not easily
possible without extending the complete CEP system for a
different specification language or rewrite of the operators.

On the right side Figure 1 (b) is our proposal,
which segregates the business logic of the operator
serverless-filter-model from the CEP runtime by

implementing the operator as a serverless function container-
ized in a virtualization environment. Hence, the independent
ServerlessFilterOperator can be reused for dif-

ferent CEP runtime environment. This segregation leads to
several research challenges that we address in this work.

1) How to allow dynamic updates of an operator, while
guaranteeing high performance in the delivery of events?

2) How to design user-defined operators, such as one for
fraud detection, independent from the underlying CEP
runtime, and the programming language?

III. CEPLESS MODEL

CEPLESS is able to consume continuous data streams (D)
from a set of event producers (P ) such as the Internet of
Things devices. A set of event consumers (C) express interest
in inferring a complex event such as fraud detection in the
form of a query q. A query q induces a directed acyclic

operator graph G = (Ω∪P ∪C,D), where a vertex represents
an operator ω ∈ Ω and an edge represents the flow of events
based on data streams, s.t., D ⊆ (P ∪ Ω) × (C ∪ Ω). Each
operator ω dictates a processing logic fω .

CEPLESS provides a set of operators Ω = {ΩS ,ΩUD}
where an operator can be either a system-defined operator
ωS ∈ ΩS or a user-defined operator ωUD ∈ ΩUD. We define
them as follows.

Definition III.1. System-defined operators (ΩS) is a set of
standard CEP operators s.t. ΩS ⊆ Ω and ωS ∈ ΩS . Conven-
tional CEP operators comprising of single-item such as selec-
tion, logical operators such as conjunction, window operators
such as sliding window, and flow-management operators such
as join [10].

Definition III.2. User-defined operators (ΩUD) is a set of
user-defined operators s.t. ΩUD ⊆ Ω and ωUD ∈ ΩUD. Unlike
system-defined operators, it contains custom logic or user-
defined code that typically cannot be expressed by system-
defined operators. The flow of information from ωUD is
encapsulated in a container, which is detailed in the next
section.

In a distributed setting, the operators are typically placed on
a set N of nodes that are responsible to process the incoming
data streams. The nodes hosting the ωUD operator is managed
by a node manager NMn that handles all ωUD operator
incoming requests.

In Figure 2, we illustrate an overview of this CEPLESS
system model comprising of three layers: the serverless layer,
the execution layer, and the devices layer. The devices layer
is composed of primary devices such as the Internet of
Things, which generates continuous data streams that are to
be processed. The execution layer comprises of a variety of
current CEP systems, which processes the data streams to
derive a complex event. Lastly, the serverless layer provides
system for defining user-defined operators and the flexibility of
multiple runtime environments. The operator graph mapping



Notation Meaning
P Set of event producers
C Set of event consumers
D Continuous data stream
G Operator graph
Ω Set of CEP operators (ω ∈ Ω)
ΩS Set of system-defined operators (ωS ∈ ΩS)
ΩUD Set of user-defined operators (ωUD ∈ ΩUD)
N Set of nodes (n ∈ N )
NMn Node manager for each node n
E Set of events (e ∈ E)
fω Processing logic of an operator
Cω Operator container
eqωUD Event queue for each ωUD

bs and br Sent and received batch of events
tbackoff Queue polling backoff time

TABLE I: Notations and their meaning.

to the layers in the figure comprises standard ωS operators
which are system-defined such as a stream operator (ωstr)
comprising continuous time-series event tuples in the form
of < E >. Here, E is a set of time-series event tuples
{< ts1, e1 >,< ts2, e2 >, .. < tsn, en >}. In the CEPLESS
system, multiple operator graphs can co-exist with different
CEP systems in execution at the same time. For example, an
operator graph of CEP-P (with dotted lines) can co-exist with
that of Flink (solid line) as represented in the figure.

A. Container Model

Operators containers provide the ability to encapsulate any
processing logic fω to be used in CEP systems as a user-
defined operator ωUD.

Definition III.3. The operator container (Cω) serves as an
interface for interacting with ωUD in order to have a uni-
fied interaction between all operators and user applications.
Events received by the CEP system in the execution layer
are forwarded through the container interface into ωUD which
provides an event entry point for fω .

While a user-defined operator continuously processes
events, it can emit single or multiple events that are forwarded
through the aforementioned interface back to the CEP system
for further processing.

B. Queue Model

In order to provide a clean abstraction for ωUD and enable
flexibility of defining any processing logic fω as an operator,
a messaging system needs to be established. To achieve this,
we enable interactions between ωUD and CEP systems using
an event queue as an event exchange point. We consider
different aspects relevant for processing a continuous event
stream such as (i) statefulness, (ii) performance, and (iii) in-
order processing. There are no restrictions in place regarding
the size of the queue as it is dependent on the number of event
items processed.

Definition III.4. An event queue (eqωUD
) is an instance in

a queuing system distributed alongside with the CEP system
on every node that participates in the cluster. Each ωUD
maintains two queues, namely Input (eq inωUD

) and Output

Flink CEP-x

Serverless CEP

Internet of 

Things

...

ωUD

ωS

ωstr ωstr

CEP-P

Execution 

Layer

Serverless

Layer

ωS

Fig. 2: The System model of CEPLESS. The grey layers are
shared.

(eq outωUD
). The former contains events received by the

CEP system’s operators ωS which are to be forwarded for
processing to ωUD. The latter contains the results of ωUD
execution, which are processed by the CEP system for the
next operator in the operator graph. User-defined operators
and CEP systems only communicate with the queue placed on
their respective node. Therefore, the queue can be accessed by
user-defined operators and the CEP system through the local
networking interface on the host which provides a negligible
overhead in communication.

Definition III.5. An event batch (bs and br) comprises of a
subset of event tuples from E that are to be sent to (bs) and
from (br) the CEPLESS system through the event queues and
the execution layer.

Definition III.6. The back-off interval (tbackoff ) is the time
to backoff from polling the event queue eqωUD

when no
events are received. It is incremented linearly at each polling
step. This effectively reduces the execution overhead when the
queues are empty.

Definition III.7. User-defined operator (UDO) interface.
Queues interact with the system layer using a UDO interface.
We consider this entity implemented in each CEP system
enabling communication with ωUD over event queues eqωUD

.
Each CEP system that wants to use CEPLESS is required to
have an implementation of the UDO interface.

To support multiple ωUD on a single machine, each ωUD
gets assigned two distinct event queues eqωUD

by CEPLESS as
defined in Definition III.4. Incoming events in the first queue
get processed by the ωUD in a sequence of their arrival. The
result of the processed events gets added to the second queue
which is processed by the CEP system again.

IV. THE CEPLESS SYSTEM DESIGN

Figure 3 shows an overview of the CEPLESS design on a
single node1. On the left side, we show the CEPLESS system
components, which allow efficient integration of multiple CEP
runtimes and their reuse while ensuring runtime updates of
ωUD operator. We show developer-centric components on the
right side, which allows developers to specify and submit ωUD

1In multiple nodes CEPLESS system is distributed (shown by the dotted
line).
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Fig. 3: Overview of a node in the dotted line using CEPLESS.
White layers are CEPLESS entities.

operators in their preferred programming language. We show
the flow of defining, deploying,and processing ωUD using
CEPLESS major components as follows.

We propose a programming interface to define and deploy
specification language and CEP runtime independent user-
defined operators ωUD to the CEPLESS system. It is important
to note that at this point developers do not need to have any
knowledge of the CEP runtime where the ωUD operators will
be deployed. 1a The developers can either program them
using our interface or 1b reuse operators by packaging them
into an executable operator container Cω and submit to the
CEPLESS registry. 2 The programming interface wraps the
user-defined operator code into a container and pushes into the
CEPLESS registry. 3 The CEPLESS system maintains all the
ωUD operators in a central registry to facilitate the reuse of
operators.

To deploy a ωUD operator, the CEPLESS system invokes
the internal UDO interface component of a specific CEP
runtime. 4 The UDO interface requests the deployment of
the corresponding operator at a Node Manager NMn instance,
which is responsible for the deployment and registration of
operator container Cω on a node. 5 After a NMn instance
downloaded the requested Cω from the registry, it is started
on the respective node for execution. The CEP runtime or
system communicates with the ωUD over the 6 input event
queue eq inωUD

and 7 output event queue eq outωUD
as

soon as the deployment by NMn has finished. In this way,
CEPLESS system provides a consistent functionality to other
serverless systems [26], [12] towards the user. In the next
subsections, we show the design of our system in terms of
system components and their deployment. Furthermore, we
introduce the interactions between CEPLESS and the provided
execution layer, i.e., the CEP system. For the design of
CEPLESS, we are focused on the following research questions
identified before.

1) How to allow updates of an operator at system runtime,
while guaranteeing high performance in the delivery of
events? (Section IV-A)

2) How to design user-defined operators ωUD independent
from the underlying CEP runtime and the programming
language? (Section IV-B)

A. Serverless Platform for CEP

In consistent with the principles of serverless computing,
the serverless platform of CEPLESS acts as a bridge between
the user and the different CEP runtime environments. The
platform simplifies the deployment and configuration for the
user while still preserving the correct execution of the ωUD
operators on the underlying IoT resources. It manages every
compute resource in the network and is therefore not bound
to a specific system physical location, e.g., in co-location
with a CEP runtime. Besides providing simple communication
between the users and the CEP system, the platform also acts
as a central point of knowledge in our deployment design. The
platform keeps information of all the submitted ωUD operators
and operator execution requests by the CEP systems. In the
following subsections, we detail on the sub-components used
in the serverless platform of CEPLESS for deployment and
runtime management of ωUD operators.

Listing 1: User-Defined Operator (UDO) Interface.

1 trait UserDefinedOperatorInterface {
2 def requestOperator(operatorName: String, cb:

OperatorAddress => Unit): Unit
3 def sendEvent(e: Event, address:

OperatorAddress): Unit
4 def addListener(address: OperatorAddress, cb:

Any => Unit): Boolean
5 def removeListener(address: OperatorAddress):

Boolean
6 }

User-Defined Operator Interface: We enable user-defined
operators ωUD to be utilized in CEP systems by abstracting
the processing logic fω from the CEP system base. Operators
can be implemented, used, and modified using any language
that is executable by the virtualization layer. With this design
choice, we give users the ability to use effectively any program
that is executable in a virtualized container, with only minor
modifications. For a CEP system to be able to communi-
cate with this abstracted operator, it needs to implement an
interface that handles events to and from the ωUD, equal
to state-of-the-art serverless systems. Therefore, we propose
the User-Defined Operator (UDO) Interface which handles
communication between the ωUD and CEP system. Because
every CEP system provides different language semantics, the
implementation of this interface differs slightly between CEP
systems, however, it is designed to provide only minimal
overhead to the existing codebase.

Listing 1 shows the required functionality that every UDO
Interface needs in a CEP system to be usable with our
extension. Line 2 is the first request issued by a CEP system
that initiates the deployment of an operator by CEPLESS.
Parameter operatorName is a unique identifier for ωUD to
be deployed. The second parameter is a function invoked as
soon as ωUD deployment was initiated and returns an operator
address at which it is reachable. The operator address is used
for routing events from the CEP system to ωUD and has to
be used at any interaction with the interface. Line 3 shows
the function that needs to be invoked to send an event to



a user-defined operator. The parameter Event is specific to
the respective runtime system. The UDO interface is required
to serialize the given event object into a readable format for
the operator. For the CEP system to be able to also receive
resulting events from the deployed operator, it can add and
remove a listener as seen in Line 4 and 5. This listener expects
a function that is called every time a new event was received
by CEPLESS from a ωUD that has a listener registered.

B. In-memory Queue Management

The serverless platform provides in-memory queues eqωUD

for communication between ωUD operators and the underlying
execution layer comprising of different CEP runtimes. The in-
ternal management of in-memory queue achieves three design
goals (i) in order and stateful processing of events, (ii) runtime
independent transfer of events to and from the platform and
the execution layer and (iii) high performance in the delivery
of events, which are extremely important for CEP applications.
In our design the CEP system and the CEPLESS are residing
on the same computational resource, thus, have only minimal
latency impact on the streaming system by avoiding network
latency. Of course, the design also allows us to deploy multiple
user-defined operators as well in a distributed setting.

In order and stateful processing of events. We use FIFO
queuing mechanisms to ensure that the given data stream
ingested to the CEP system in the execution layer keeps the
order for processing of the operator. Equally, the data stream
generated from ωUD is handled in the same manner. In this
way, CEPLESS keeps the order of events, however, CEPLESS
is dependent on the execution layer ordering mechanisms, e.g.,
Flink ensures ordering using watermarks, to ensure correctness
in ordering such that there are no false positives and negatives.
We store the incoming events from the execution layer (to
be sent to the ωUD operator), outgoing events from the ωUD
operator (to be sent to the execution layer) as well as the
intermediate state of operators in in-memory queues. These
are maintained for every ωUD operator by the serverless layer.

A universal message format encapsulates the events which
are passed into the queue. This format allows us to interact
with different CEP runtimes without any dependence on their
semantics. As the events are received from the execution layer,
the serverless layer communicates with the in-memory queue
for sending and receiving the events. The in-memory queue
handles this communication using a client-server model. When
the client residing at the serverless layer creates a request to
add a new event, the event is appended to the tail of a specified
operator queue eqωUD

. The communication is managed within
the queue by issuing commands such as push and pop
received in the form of TCP requests whenever the events
are to be sent and received, respectively. The queues store the
events and their state in memory without having to persist them
on external storage, which could induce high transfer and I/O
latency. In this way, we provide fast but stateful processing of
events, which is extremely important for CEP applications to
deal with operators such as time-based windows.

Algorithm 1: Event queue command batching and
flushing

Data:
bs ← Batch of events sent (and processed) to ωUD ;
br ← Batch of events received from ωUD ;
tbackoff ← Back-off interval increment;
tsleep ← Total current back-off time;
sendBuffer ← Internal Buffer for command compilation;
cmds ← Event Queue client commands;
inBatchSize ← Batch size of commands to be received;
outBatchSize ← Batch size of commands to be sent;
// receives events from the execution layer

(ωS)
1 function receiveEvent
2 bs.push(event);

// sends events to ωUD

3 function backgroundThreadSend
4 tsleep ← 0;
5 while true do
6 if bs.size = 0 then
7 tsleep ← tsleep + tbackoff ;
8 sleep(tsleep);
9 else

10 if bs.size > outBatchSize then
11 sendBuffer ← bs.pop(0, outBatchSize);
12 else
13 sendBuffer ← bs;
14 bs.clear();

15 if sendBuffer.size > 0 then
16 cmds ← sendBuffer.compileCommands();
17 cmds.flush();

18 tsleep ← 0;

// receives events from ωUD

19 function backgroundThreadReceive
20 tsleep ← 0;
21 while true do
22 br ← range(0, inBatchSize) ;
23 if br .size = 0 then
24 tsleep ← tsleep + tbackoff ;
25 sleep(tsleep);

26 forwardEvents(br) ;
27 tsleep ← 0;

However, CEP systems often observe high rates of incoming
events. For the client-server model as above, this would mean
many TCP requests written to the network layer for each
incoming event, which can be highly inefficient. We provide
a solution to this problem as follows.

Guarantee high performance in the delivery of events. To
handle the high rates of incoming events, we parallelize the
process of event transfer and provide a batching mechanism
that aids in processing a high rate of incoming events. Both
mechanisms provide advantages to process more events per
time unit and therefore aid in provisioning high throughput
in delivery. With batching we manage the command flushing
mechanism to the TCP server, which is a known control
mechanism of in-memory queues [5]. This effectively means
a suitable time when commands can be written to the network
layer, i.e., the time when the commands are started. With
automatic command flushing commands are always issued as
soon as they are invoked at the client. This results in many
commands (i.e., requests) being written to the network sequen-
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Fig. 4: Credit card fraud detection query that is used for
evaluating our system.

tially, resulting in many TCP requests opened and closed per
time unit. To resolve this issue, we send commands by issuing
command flushes at specified intervals, independently from the
query process. With command flushs, the TCP connection is
only opened once per batch, all the commands are sent and
the result for all commands is received. In Algorithm 1, we
present this process. On the main thread (Line 2) we collect
the received events from the execution layer (or user-defined
operator ωUD) and return immediately for fast processing in
the execution layer. We utilize a background thread (Line 3–
18) immediately initialized in the beginning, which continu-
ously processes the collected events by flushing the commands
(Line 17). The background thread avoids any blocking of the
main thread which continuously receives the events. Instead of
sending one request per event, we use a batching mechanism to
collect multiple events and flush a batch bs of commands to the
in-memory queue server after a certain threshold is exceeded
(Line 10). This essentially avoids the slowing down of the
query as detailed above. The background thread runs after a
backoff time tbackoff if previous batch bs was empty (Line
6). The total backoff time tsleep gets linearly increased by
tbackoff with every iteration (Line 7) that contains an empty
batch bs. This process avoids any wastage of resources as there
is no use of sending a request when the batch is empty. As
soon as there are events in the batch, those are processed and
the backoff interval is reset (Line 18).

To receive events after they were processed from the ωUD
operator, we initialize another background thread (Line 19–
27). Here also, we take advantage of command batching for a
range query (Line 22). Much like database range queries, the
in-memory queue in CEPLESS provides the ability to define a
start index and length to fetch items from the event queue.
Using this command, we effectively reduce the number of
requests to the event queue and fast-forwarding. Similar to
the send thread, the receive thread utilizes a linearly increased
backoff time to avoid polluting an empty queue with requests
(Line 24).

The combination of these mechanisms: parallel processing,
manual flushing, and command batching, CEPLESS showed
significant performance improvements in terms of throughput
while still preserving low processing latency, which is evalu-
ated in Section V.

V. EVALUATION

In the evaluation we intend to answer the following ques-
tions towards CEPLESS:

Simulation time ts 20 min
Warmup time tw 60 s
Number of runs 30
Number of operators 3
Number of producers 1 - 3
Number of brokers and consumers 1
Number of serverless operators 1
Back-off interval increment
tbackoff

1 ns

Input event rate 1000, 10,000 and 100,000
CEP systems Apache Flink [8], CEP-

P [21]
Queries Fraud detection and

forward
TABLE II: Configuration parameters for the evaluation. De-
fault or mostly used parameters are underlined.

1) How to provide dynamic operator updates using CEP-
LESS without runtime dependence? (Section V-B)

2) What is the performance impact in terms of latency and
throughput of implementing a user-defined operator us-
ing CEPLESS in comparison to a direct implementation
in CEP systems? (Section V-C)

We answer the above questions in a threefold evaluation.
In Section V-B, we evaluate the ability of CEPLESS to
dynamically update an operator in comparison to the baseline
of state-of-the-art CEP systems using throughput metrics. In
section V-C, we provide a performance comparison of CEP-
LESS with baseline CEP systems Flink and CEP-P in terms of
throughput (Section V-C1) and latency (Section V-C2).

A. Evaluation Setup

In the following, we describe the evaluation platform, the
CEPLESS implementation, dataset, and queries used in the
evaluation.

Evaluation platform. For evaluating CEPLESS, we uti-
lize Docker version 19.03 running on a server with In-
tel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz processors
with Ubuntu 18.04 installed. The server has 128 GB RAM
and 24 cores of Intel CPU. We will use two different setup
modes: (i) running direct implementation of fω in CEP system
(baseline) and (ii) running the CEP system in combination
with CEPLESS and a user-defined operator (ωUD). For the
former setup, we will execute the CEP system in a docker
container which runs a given query. For the latter setup, the
CEP system and CEPless will also be executed in two separate
docker containers running the same query. The CEPless setup
will be running the event queue, a user-defined operator ωUD,
and the node manager on the same node, as proposed by our
design. Furthermore, the docker containers are not restricted
in their respective resource usage and therefore able to utilize
the complete available node resources.

Dataset. We use a real-world dataset containing financial
transactions [22] to detect credit card fraud for evaluation.
The anonymized dataset contains 284,807 rows of credit card
transaction data. As a data producer, we used Apache Kafka
running directly on the same computational resource.

Queries. The query used for the evaluation is shown in
Figure 4. In our evaluations, we will replace the Filter (ωσ) by



a user-defined operator realized in CEPLESS (figure at right).
This operator performs a simple filter operation for filtering
out transactions as fraud in the dataset. It will be evaluated
using only the natively provided operator directly in the CEP
system specification language and written as a ωUD operator in
our system. Furthermore, to evaluate the performance impact
of CEPLESS onto existing CEP systems, we use a forward
query that forwards the event tuple or data stream directly to
the consumer (cf. Section V-C).

We consider credit card terminals as producers (e.g. at
supermarkets). Every card terminal produces an event as
soon as a transaction process has started, i.e. the customer
has presented the card at the terminal. An emitted event
contains the following tuples [22]: timestamp, amount, cardId,
terminalId. Events sent by card terminals serve as input for a
CEP query that detects fraudulent transactions. Terminals are
connected directly through a wired connection to the network
which enables stable connections to brokers.

A summary of the configuration parameters we used in the
evaluation can be found in Table II. Backoff time describes the
interval in which the aforementioned batches are written to the
network layer. In the next section, we go into the performance
evaluation of CEPLESS.

B. Evaluation of dynamic operator updates

To understand how CEP systems benefit from CEPLESS
operator updates, we show evaluations regarding the explicit
time when updating an operator that is currently in execution.
For this, we utilize two metrics: i) downtime, ii) update time
and (iii) throughput. Downtime represents the amount of time
where no events were received at the consumer side, while
update time gives the amount of time it took to update the
operator to the new version. Throughput is defined as the
number of output events received at the consumer for the
input events ingested by the producer. Such operator updates
are necessary for applications like fraud detection, earlier
motivated in Section II. Small down and update times are
considered to be good. We evaluated CEPLESS in comparison
to Apache Flink by performing an operator update using our
presented mechanism for the former and by deploying a query
with the new operator for the latter. The business logic of
the operator gets updated to detect more fraud patterns hence
resulting in a higher throughput of events after the update.
Ideally, the throughput should remain at a constant rate to not
have performance peaks in resource usage of the given server.
Both systems share the same business logic inside the operator
before the update and get updated with the same business
logic.

The evaluated throughput of the experiment is shown in
Figure 5. We repeated the experiment 30 times and plot the
95% confidence interval (shown as shadow in the line plot)
of the observations. The operator update was issued at t =
290 in both systems. While the update is proceeding in Flink
a downtime is observed, because of the deployment of the
new query. This downtime is introduced by the distribution
and execution of the used JAR-file for the query. The mean
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Fig. 5: Apache Flink experiences a downtime while CEP-
LESS steadily updates the operator while providing optimal
throughput.

downtime of the query was approximately 8.6 s, which is
equivalent to the update time, and resulted in a throughput
decline and spike at approximately t = 298. This spike is
caused by the events that were not processed while the query
was in an update state. As soon as the new query is executing
again, it begins processing from the last saved checkpoint
at the data generator. In comparison, CEPless showed no
downtime at all, only a mean update time of 238 ms without
a throughput decline or spike. In fact, the CEPLESS achieves
a throughput of the new query very steadily at t = 300.

We achieved this relatively small update time with the
mechanism of updating the operator containers instead of
complete queries. While this update occurs, the state of the
query currently in execution is kept in the presented message
queues.

C. Performance Evaluation

To understand how the CEPLESS system influences a CEP
system we analyze both implementations (Apache Flink and
CEP-P) in terms of end-to-end latency and throughput. These
two are the most important metrics for a CEP system as well as
the financial fraud detection example. We evaluate a forward
query introduced in Section V-A to observe whether CEPLESS
achieves optimal throughput and latency while forwarding
the data streams. We evaluate the following three system
configurations:

1) Running only the native CEP system implementation
without our extension (baseline).

2) Running the CEP system with a user-defined operator,
Redis [5] as an in-memory queue with and without
batching.

The impact of throughput and latency are evaluated on Flink
and CEP-P that showed similar observations as detailed in the
following. This shows the universal applicability and behavior
of different CEP systems.

1) Impact on throughput: An optimal throughput is
achieved when the output events exactly match or supersedes
the input event rate. We collected throughput measurements for
the above three configurations for 20 minutes and other param-
eters as presented in Table II. We repeated the experiment 30
times to provide 90, 95, 99% confidence interval of throughput
for the different input rates, respectively. In Table III , we
present the mean throughput measurements for the baseline
Flink and our extension CEPLESS with Flink ingested with



1,000 events/s 10,000 events/s 100,000 events/s
System mean min max quantiles (90, 95, 99) mean min max quantiles (90, 95, 99) mean min max quantiles (90, 95, 99)
Flink 1047 108 1093 1001, 1002, 1002 10475 2180 19990 10010, 10011, 10020 100123 16770 200168 100098,100136,100797
CEPless-Flink 1070 378 1190 1003, 1004, 1004 10477 1174 20007 10019, 10027, 12081 100353 18353 249689 100623,100815,101806
CEP-P 1021 396 2292 1001, 1002, 1002 10022 2660 45185 10010, 10015, 10110 - - - -
CEPless-CEPP 1000 214 4927 1001, 1002, 1004 10002 580 32091 10015, 10025, 10163 - - - -

TABLE III: Throughput measurements: mean, min, max, and quantiles (90,95,99) for the forward operator.

1,000 events/s 10,000 events/s 100,000 events/s
System mean min max quantiles (90, 95, 99) mean min max quantiles (90, 95, 99) mean min max quantiles (90, 95, 99)
Flink 0.78 1.0 31.46 0.98, 1.06, 1.55 1.71 1.0 341.61 2.09, 2.22, 3.11 1.74 1.0 87.91 2.29, 2.45, 2.88
CEPless-Flink 3.19 1.0 26.19 4.10, 4.35, 4.9 3.63 1.15 503.50 4.21, 4.48, 5.15 4.61 1.82 956.31 5.71, 6.11, 7.80
CEP-P 1.14 1.0 27.89 1.45, 1.57, 1.82 4.21 1.0 496.63 2.54, 2.74, 24.32 - - - -
CEPless-CEPP 4.94 0.72 21.27 6.10, 6.37, 6.86 5.21 1.97 488.84 6.25, 6.75, 10.38 - - - -

TABLE IV: Latency measurements: mean, min, max, and quantiles (90,95,99) for the forward operator (in ms).

an input rate of 1,000, 10,000, and 100,000 events per second,
respectively from left to right. In comparison, our extension
of Flink with CEPLESS achieves matching optimal throughput
per time unit for the given input rate. Clearly, CEPLESS-Flink
matches the baseline in all the results. We observed similar
results for our extension on CEP-P for throughput. CEP-P
baseline was not able to perform well under a higher scale
(100K events per second) because of the absence of back
pressure and flow control mechanisms in the system. Hence
we do not report the results for the 100K event rate. For 1K
and 10K events, CEPLESS with CEP-P performs equally well
and attains optimal throughput. Henceforth, our extension does
not introduce any overhead in terms of throughput and can
easily deal with a high scale of ingested events as seen in the
evaluations.

To achieve matching throughput for high event rates 100K
events we set the input batch size to 10,000. As described
in Section IV-B, this implicitly increases the size of a range
query in Redis leading to lower queue processing overhead
due to fewer requests and internal network round-trips. We
further elaborate on the batch size in the last subsection.

Table III in some cases also shows higher throughput results
for CEPLESS-Flink than Apache Flink (baseline), which is an
interesting observation. We analyzed this behavior and found
out that since we process events in batches due to the batching
mechanism introduced in Algorithm 1, the events are queued
up in the batch instead of getting processed directly. Moreover,
Flink implements flow control and backpressure mechanisms,
e.g., credit based flow control [8] to deal with such situations.
The throughput for CEPLESS-Flink is higher since the system
handles events that were previously received but backpressured
by the Flink engine. Therefore, when looking at the evaluated
values the throughput per second might seem higher but at
minimal latency cost, evaluated in the next subsection.

2) Impact on latency: The end to end latency is defined as
the time taken to retrieve an event from the producer until it
reaches the consumer from the CEP engine. Similar to the
throughput evaluations, we collected latency measurements
for different input event rates. In Table IV , we present
the latency measurement observed for the Flink baseline and
our extension. Our CEPLESS system atop Flink attains good
performance while introducing only a minimal overhead in
terms of latency. We observe only a mean overhead in latency
of 1.92 ms for 10,000 events per second and 2.87 ms for

100,000 events per second (calculated as mean latency of
CEPLESS– mean latency of Flink). We also present the latency
measurements observed for CEP-P (baseline) and with our
extension. Similar to Apache Flink, our extension here as
well induce a minimal overhead of 1 ms for 10K events. The
overhead is minimal because we have parameterized the batch
sizes for a suitable configuration as seen in the next subsection.
The overhead comprises of two factors: i) the translation in
the universal message format of every event and ii) the round-
trip-time (RTT) of the message queue to the CEP system in
use.

VI. RELATED WORK

In the following, we present previous work in terms of
flexible operator deployment and unifying CEP systems and
serverless frameworks.

CEP Systems and Programming Models. Apache Beam
[11] developed by Google provides a unified programming
model as an abstraction layer above multiple different CEP
systems including Apache Flink [8] and Storm [20]. This
work confirms the need to have a unified programming model
for deploying queries on different CEP systems. However,
with operators being bound to the respective execution en-
vironments – as proposed in Beam – CEP systems fail to
fulfill the flexibility of complex applications that require
different systems to interact together. Recently, Bartnik et
al. [7], proposed an extension of Flink with runtime updates
of operators, however, their proposal is Flink’s runtime de-
pendent and not applicable to other CEP runtime systems.
Some classical systems like Amit [1] and Apama [2] allow
dynamic updates of CEP operators, however, with a strict
dependency on the runtime. Many CEP languages have been
developed in the past years such as CQL [6], SASE [28],
TESLA [9], besides the domain-specific ones proposed in the
above programming models. However, as per our knowledge,
none of the above programming models provide a powerful
abstraction on multiple runtime environments as we do.

Serverless Frameworks. In recent years, many commer-
cial serverless platforms evolved e.g., AWS Lambda [26],
Google Cloud Functions [12], Azure Functions [24], and IBM
OpenWhisk [16]. Most of these providers often support the
streaming of input data towards serverless functions, making it
possible to also execute continuous data flows. However, often
those services are limited to the provider-specific streaming so-



lutions for example Kinesis [25] by Amazon. An open-source
alternative to AWS Lambda is Kubeless [19], which provides
multiple different runtime environments supporting different
languages, but also the ability to provide a custom runtime us-
ing a custom image. Programming models for serverless [18],
[23] on top of AWS and Microsoft Azure, respectively have
been proposed as well. However, an integrated solution, with
CEP systems, e.g., Flink, is still missing which we see as a gap
in current serverless execution paradigms. Our system could
be used as another serverless service by cloud providers to
provide real serverless operators in combination with existing
streaming systems. This service could be especially useful
when looking at CEP systems.

VII. CONCLUSION

In this work, we proposed CEPLESS, a CEP system
based on serverless computing, which provides flexibility in
developing new user-defined operators in any programming
language and updating them at runtime. This is highly bene-
ficial for applications that require dynamic changes such as
fraud detection in financial context and Internet of Things
applications. To this end, we (i) ease development, (ii) provide
dynamic operator updates and (iii) improve the flexibility of
operators in CEP system while preserving the statefulness and
meeting the performance requirements in terms of throughput
(up to 100K events per second) and latency (˜1.9 ms). This
work essentially takes an important step towards serverless
computing for CEP systems. Furthermore, it can be highly ben-
eficial to develop user-defined operator placement algorithms
that are independent of the execution environment. Besides,
distributed in-memory queues such as Anna [27] can be used
to achieve a higher scale in stateful processing for instance for
bigger window sizes. Finally, CEPLESS provides a foundation
for developing advanced serverless features like just-in-time
billing and auto-scaling on cloud platforms. For example, the
programming interface can provide the information required
for billing operators and container technology is at the core of
CEPLESS can be easily used for auto-scaling. Sophisticated
scaling strategies for CEP [13] can also be integrated as a
runtime in our execution layer.
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