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ABSTRACT
At first glance, running mission-critical applications at the edge
appears to be an opportunity to benefit from scalability and reusabil-
ity. The low latency to the edge makes it particularly interesting
for mission-critical applications. The hardware heterogeneity of
the edge, coupled with the strict requirement for the execution
time of a mission-critical application, creates the need for flexible
application control and, at the same time, increases the complexity
of modeling such systems. With its Feature Models (FMs), software
product line engineering offers a modeling option for various al-
ternative compositions of an application. However, the calculation
of valid configurations takes too long for the dynamic adaptation
of an application flow of a mission-critical application. This paper
presents an approach for slicing FMs to support mission-critical
applications. Our approach supports the strict requirements on the
execution time of mission-critical applications.

CCS CONCEPTS
• Software and its engineering → Software product lines;
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1 INTRODUCTION
In today’s era of technological advancement, edge computing solu-
tions play a critical role in optimizing response times and resource
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efficiency, especially in mission-critical applications. These applica-
tions, which often have strict execution time requirements, require
innovative approaches to overcome the inherent challenges of dis-
tributed systems. Edge computing offers an attractive solution by
decentralizing processing directly at the first entry point of the
network (e.g., a 5G tower), close to the data source, minimizing
latency, and optimizing bandwidth utilization [3].

However, a key challenge when implementing such systems
is the complexity of configuring and adapting these systems to
dynamic environmental conditions and different requirements. Fea-
ture Models (FMs) [1] offer a powerful method for describing the
diverse configuration options of software products, which can be
particularly useful in a hardware heterogeneous environment such
as edge computing. By modeling different functionalities and prop-
erties, they make it possible to record and manage the numerous
variants of applications systematically.

Moreover, the constrained resources at the edge frequently ne-
cessitate a trade-off between computation time and resource usage.
Approximate computing becomes relevant in precisely these situa-
tions. Approximate calculation methods tolerate estimable inaccu-
racies in the calculations to improve energy efficiency or shorten
computation times [5]. For mission-critical applications that need
to meet strict deadlines, approximate computing offers a way to per-
form computations under strict constraints by balancing adequate
accuracy with a considerable reduction in resource consumption.

Existing work that uses FMs to deploy applications at the edge
focuses on optimizing energy [2]. However, mission-critical appli-
cations must fulfill a wide range of requirements. One essential
requirement is adherence to a maximum execution time. It is, there-
fore, essential that the possible execution types can be found quickly
at an edge. To this end, we address how we can split FMs so they
can meet the strict deadline of a mission-critical application.

2 FEATURE MODEL SLICING
The complexity of FMs in mission-critical applications at the edge
presents significant challenges, particularly regarding execution
time and storage needs. These challenges escalate as the software
complexity increases, leading to an exponential rise in the number
of valid configurations. Fig. 1 illustrates the execution times using
the SAT4J solver [7] for FMs with varying numbers of valid config-
urations. The complexity of the FMs is influenced by the number
of tasks and the available approximation options per task. In detail,
the overall complexity of the model, which consists of several tasks,
is calculated as the product of the number of configurations of all
tasks. If 𝑡 is the number of tasks and each task has 𝑎𝑖 alternatives,
then the overall complexity is

∏𝑡
𝑖=1 𝑎𝑖 . As shown in Fig. 1, the ex-

ecution time without slicing the FM can extend to several hours.
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Figure 1: Heatmap of Average Execution Times without Slic-
ing, Varying between 2 to 100 Tasks and 2 to 15 Alternatives
per Task.

If we take the combination of 𝑡 = 7 and 𝑎𝑖 = 6 as an example, this
already results in a complexity of 279,936 for the FM. The execution
time here is already around half an hour.

To mitigate these issues, we introduce a novel approach that de-
composes existing FMs into Partial Feature Models (PFMs) during
the offline phase, which is performed prior to any service requests
and involves ”single-time tasks”. This decomposition significantly
reduces the complexity of the FMs and accelerates the process of
identifying valid configurations, thereby enhancing system respon-
siveness during the online phase.

Using predefined rules, our method utilizes specialized slicing
techniques to streamline the structure of FMs. These rules are de-
signed to identify crucial junctures for decomposition, specifically:
1) initiating and terminating parallel executions and 2) capping
the complexity of sequences based on set thresholds. By breaking
down the FM into manageable PFMs, each representing a simplified
fragment of the original model, our approach not only speeds up
the identification of valid configurations but also cuts down on
storage needs by diminishing redundancy.

The reassembly of these PFMs into a valid configuration of the
original FM occurs dynamically during the online phase, allowing
the system to adapt to real-time changes. This is done by focusing
only on parts of the FM relevant to the available edge hardware,
reducing processing. Finally, we transform the FMs into a graph
structure, enabling existing work [6] to meet the strict performance
criteria of mission-critical applications and react to changing con-
ditions.

3 EVALUATION
To demonstrate the efficacy of our approach, we evaluated FMs with
varying complexities: a Small FM with 4,096 valid configurations
and a Medium FM with 139,968 valid configurations. These models
were assessed against distinct hardware configurations of edge
devices as detailed in Table 1.

Table 1: Edge Configurations

Edge GPU CPU Architecture Sensor others
Country Side false x86 A ...
Highway true x86, x64 A, C ...
Small City true x86, x64 A, B ...
Medium City true x86, x64, ARM A, B, C ...
Full true x86, x64, ARM A, B, C, D ...

Country Side Highway Small City Medium City Full

2.5 5.0 7.5 10.0 12.5
Requirements

100

101

Ø
 E

xe
cu

tio
n 

Ti
m

e 
(m

s)

(a) Utilization of FM Small

2.5 5.0 7.5 10.0 12.5
Requirements

10 1

100

101

102

103

Ø
 E

xe
cu

tio
n 

Ti
m

e 
(m

s)

(b) Utilization of FMMedium

Figure 2: Average Execution Time for FMs, Combined with
Varying Available Edge from Table 1 and Requirements.

To ensure accurate timing measurements, we utilized the Java
Microbenchmark Harness (JMH) [4], conducting 30 iterations with
three warm-up runs in SingleShot mode on an edge node (ThinkSta-
tion P3 equipped with an Intel Core i9-13900K processor, 13th
generation, 3 GHz, and 32 GiB of RAM).

The results shown in Fig. 2 illustrate the execution times needed
to compute all valid configurations per edge based on the hardware
requirements each FM must meet. The execution times are plotted
as lines with logarithmic scaling to highlight variations due to dif-
ferent requirement levels. As expected, execution times increase
with the complexity of the requirements, with the longest times
seen in the full-edge scenario, which serves as a worst-case bench-
mark without configuration reduction. In contrast, when specific
requirements are unavailable, the number of valid configurations
decreases, significantly reducing execution times—by at least 100×
for the Medium FM scenario compared to the full-edge scenario, as
shown in Fig. 2b. Notably, without slicing, processing took around
half an hour at double the complexity, but with slicing, it was re-
duced to milliseconds to one second at half the complexity.
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