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Abstract—AI-based mission-critical software exposes a blessing
and a curse: its inherent statistical nature allows for flexibility
in result quality, yet the mission-critical importance demands
adherence to stringent constraints such as execution deadlines.
This creates a space for trade-offs between the Quality of Result
(QoR)—a metric that quantifies the quality of a computational
outcome—and other application attributes like execution time
and energy, particularly in real-time scenarios. Fluctuating re-
source constraints, such as data transfer to a remote server
over unstable network connections, are prevalent in mobile
and edge computing environments—encompassing use cases like
Vehicle-to-Everything, drone swarms, or social-VR scenarios.
We introduce a novel approach that enables software engineers
to easily specify alternative AI service chains—–sequences of
AI services encapsulated in microservices aiming to achieve a
predefined goal—–with varying QoR and resource requirements.
Our methodology facilitates dynamic optimization at runtime,
which is automatically driven by the MARQ framework. Our
evaluations show that MARQ can be used effectively for the
dynamic selection of AI service chains in real-time while main-
taining the required application constraints of mission-critical AI
software. Notably, our approach achieves a 100× acceleration in
service chain selection and an average 10% improvement in QoR
compared to existing methods.

Index Terms—Mission-critical AI, Quality of Result, Edge
Computing, Approximate Computing, Software Engineering

I. INTRODUCTION

Technological advancements are transforming end devices

from mere data consumers into active data producers. This

shift encompasses consumer applications such as autonomous

driving, where vehicle safety is enhanced through coopera-

tive perception mechanisms [1]–[3], as well as large-scale

industrial applications within the Industrial Internet of Things

(IIoT). In the IIoT, for example, vast quantities of sensor

data are processed to predict component failures [3], [4].

Additionally, the realm of AI technologies is witnessing the de-

velopment of numerous innovative methods and solutions [5].

Traditionally confined to large data centers, there is a shift

towards making AI systems more resource-efficient and bring-

ing them closer to the end-user, which edge computing can

facilitate [6], [7]. Edge computing involves deploying micro

data centers closer to clients than traditional cloud data centers

for latency-critical applications [4], [8], [9]. However, these

micro data centers often possess less computing power and

elasticity compared to traditional cloud data centers [9], [10].

Consequently, the likelihood of exceeding the capacity at an

edge location, such as during nearby sports events, is higher

due to limited resources.

Edge computing enables the execution of mission-critical

applications directly at the data generation points by leveraging

its geographical proximity to end-users [4], [8], [9]. This

approach facilitates the deployment of mission-critical AI

applications in sectors like IIoT and Vehicle-to-Everything

(V2X) communications. By “mission-critical applications”,

we refer to those in which a computation failure could

significantly affect the entire system [11]. A failure implies

that a component of the mission-critical application does

not respond or only responds with delays, thus demanding

stringent requirements such as maximum execution times [11].

When mission-critical applications face stringent deadlines,

redirecting excess load to larger cloud data centers or other

edge locations may undermine the purpose of edge computing

due to increased latency. In such scenarios, clients must either

accept delayed responses or adjust the resource demands of an

application. To adapt resource demands at runtime, we make

use of approximate computing techniques. The concept of

approximate computing assumes that many application types

can tolerate controlled errors [12]–[14].

Ensuring that AI applications meet strict runtime constraints

remains a significant challenge. Existing solutions utilize

approximation techniques tailored to specific AI application

types, such as tensor-based, without considering system-wide

architecture [19], [20], which is essential for establishing a

dynamic, mission-critical AI service ecosystem. Some ap-

proaches have investigated offloading entire applications to

edge environments, optimizing for execution time or energy

consumption [21]–[23]. Still, there remains a gap in execut-

ing AI applications under changing conditions essential for

mission-critical AI services at the edge.

This paper introduces MARQ, the first framework, to our

knowledge, that supports the engineering and execution of

AI-based service chains capable of runtime adaptation, multi-

objective optimization, and adherence to constraints such as

maximum execution time or energy limits. One of the key

metrics MARQ uses to evaluate computational outcomes is

Quality of Result (QoR). MARQ facilitates dynamic adapta-

tion when applications have strict execution requirements, such

as deadlines. This involves the selection of different subtasks

and adjusting execution parameters within the microservice
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(a) Input (b) People detection YOLO (c) Face detection HOG (d) Result blurring

(e) Input (f) People detection RCNN (g) Face detection CNN (h) Result blurring

Fig. 1: Example of an AI service chain: From input image to blurred faces, using different approximations (input data from

the Roboflow dataset [15], person recognition from OpenMMLab [16], face detection from Face Recognition API [17], and

bilateral blurring from ImageMagick [18]).

chain to balance multiple criteria. The goal is to achieve trade-

offs among critical factors like QoR, energy use, and timing

constraints. By using multi-criteria optimization, MARQ flex-

ibly adapts to changing conditions, such as latency shifts or

resource fluctuations. It ensures predefined constraints are met

while optimizing performance and result quality, making it

suitable for mission-critical applications.

After we have presented a motivating example for our work

and given a definition for QoR in (Section II), we

• present the design of MARQ, including its overall archi-

tecture and components (Section III);

• introduce a comprehensive graph-based model to capture

mission-critical AI service chains, including the different

execution attributes and the QoR (Section IV), and the

algorithm used to dynamically select the appropriate

service chain at runtime (Section V);

• build a system prototype for MARQ and evaluate it

with synthetic and real-world workload experiments (Sec-

tion VI). Overall, our evaluations demonstrate a sig-

nificant acceleration in decision-making, up to 100×
faster than existing methods, while maintaining a low

probability of deadline breaches and improving average

QoR by over 10%.

Section VIII summarizes related work. Section IX draws final

conclusions.

II. MOTIVATING EXAMPLE

A fundamental concept of our work is the use of QoR

to quantify the arbitrary applications’ result quality and to

balance it with other parameters such as time or energy.

Previous publications have used the concept of QoR [21], [22],

[24], [25]. The QoR is determined either in discrete categories

(e.g., 1 to 5) [25] or based on different metrics, such as the F1

score [21]. However, the exact methodology for determining

the QoR for a broader range of applications remains unclear.

We define QoR as follows:

Definition 1 (Quality of Result): QoR is a measurable value

that quantifies the result of a task, specified as a percentage

with a domain-specific expression.

For example, in an AI-based object recognition application, the

quantification can be the average accuracy [26]. For Big Data

applications, the quantification can be based on the relative

error [27]–[29].

Using the example of recognizing people and faces, it

becomes clear that processing can be performed using different

approaches. Fig. 1 illustrates an image processing workflow.

In this example, we present two different executions of the

same application, both aiming for the same goal—ensuring

data privacy compliance in vehicular driving functions—but

utilizing different implementations for individual tasks. Specif-

ically, for this example, we use an implementation of You Only

Look Once (YOLO) [30] (see Fig. 1b) with Region-based

Convolutional Neural Network (R-CNN) [31] (see Fig. 1f)

as an alternative that can be used for adaption. For facial

recognition of identified persons, we employ Convolutional

Neural Network (CNN) (see Fig. 1g) as one method and

Histograms of Oriented Gradients (HOG) [32] (see Fig. 1c)

as an alternative.

As Fig. 1 shows, these algorithmic alternatives offer dif-

ferent result qualities with identical input data, which leads

to different execution times. Each algorithm is encapsulated

as a microservice and enables the creation of a dynamic

microservice chain by selecting a sequence of microservices at

runtime. While the first microservice chain, shown in Fig. 1a

to Fig. 1d, performs the same task as the microservice chain

shown in Fig. 1e to Fig. 1h, the first chain has a lower

recognition rate. The recognition rate of the chain can be

calculated as the multiplication of each stage [33]. Specifically,

the first chain recognizes 50% of the objects at the beginning
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and 50% of the objects in the second step, resulting in an

overall accuracy of 25%. Whereas the second chain recognizes

100% of the people in the first step and 75% of the faces

in the second step, resulting in an overall accuracy of 75%.

Consequently, the second chain has a higher QoR.

Building on this knowledge, this paper explores the use

of approximation techniques within algorithms to balance

various conditions of an application so that its constraints can

be consistently met. Constraints can be provided before the

execution is started, and MARQ does not conceptually limit

them. In the current implementation of MARQ, however, we

focus on using the maximum execution time, maximum energy

consumption, and a minimum value for QoR as constraints. In

the previous example, QoR can be reduced to meet a deadline

and a maximum energy threshold. Additionally, approximate

computing allows for the use of specialized hardware, im-

pacting execution time, energy consumption, and financial

costs and enabling trade-offs between execution time and

energy consumption [12], [24]. Our approach extends the

concept of approximate computing by integrating QoR as a

core consideration. We propose that different implementations

of the same task can be used to meet execution goals—such

as time, energy, and QoR—in line with specific constraints.

By dynamically adapting the microservice chain and thus the

resulting QoR, we can mitigate negative effects from external

factors like latency spikes or limited hardware availability,

which might otherwise risk violating critical constraints in

mission-critical applications.

QoR is intricately connected to Quality of Service (QoS)

and Quality of Experience (QoE). Unlike QoS, which in our

case represents the measurable value of, i.e., latency and

bandwidth and is therefore infrastructure-centric, QoR is the

calculated quality of an outcome of an application and its

parts. Trading the QoR for the QoS enables improvements

in critical QoS aspects such as reliability and performance.

If the latency time is of crucial importance, the transmission

time can be reduced by relaxing the QoR requirements or

reducing the amount of data generated, thus meeting the QoS

goals. In user-centric scenarios, QoR has a direct impact on

QoE. Approaches include the targeted reduction of the frame

rate [34] or targeted sampling in stream processing tasks [28],

[35], [36] to achieve a balance between functionality and user

experience.

III. SYSTEM ARCHITECTURE

The dynamic selection of subtasks at runtime, such as the

selection of a person recognition algorithm (as in the presented

example of image processing, see Fig. 1), requires not only

the modeling of the application and selection of subtasks

(described in Section IV) but also a system architecture that

enables the control of microservice chains at runtime.

The architecture consists of two main components: the

QoR Manager and storage. The QoR Manager controls the

microservice chains to ensure that application or user require-

ments are met. Figure 2 shows the architecture for an edge

environment where different processing units are connected.
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Fig. 2: MARQ architecture, including data and control flow.

The figure outlines the control and data flow from a request

to the execution and customization of the microservice chain.

The QoR Manager consists of several parts: a decision

logic determines the best path for the requested execution (see

Section V), the resource manager keeps information about the

used and free resources, and the application manager monitors

the status of the requested applications so that adaptations can

be made if necessary. When new servers are added to the edge,

they register their resources with the QoR Manager, which can

then manage multiple servers and applications simultaneously.

The second main component of the architecture is the storage

that stores the application graphs (described in Section IV),

which serve as the basis for the runtime execution of the

microservice chains.

Execution flow: The request execution flow starts with a

client sending a request to execute an application to the QoR

Manager, including the application ID for unique identification

and the constraints that must be met by the execution (1). In

the example of the microservice chain from Section II, we use

a maximum runtime as a constraint to be able to compare the

various QoR results. The QoR Manager loads the associated

application graph that was created in a so-called offline phase

(Section IV). If the graph is not yet available in the memory

of the QoR Manager, it is requested from the storage (2

+ 3). Based on the application graph, the best execution

path is determined (see Section V), fulfilling the specified

constraints and balancing the various execution parameters

without favoring or disfavoring individual parameters. At the

same time, the QoR Manager allocates the resources for

execution at the edge (4). The allocation is initially simple, and

the microservices described in the graph are reserved. To start

the actual processing, the QoR Manager returns the endpoint

of the first microservice, consisting of IP address and port,

to the client (5). The processing chain begins as soon as the

client has sent the request (6) to the first microservice (m1).

The microservice encapsulates the AI service and provides a

management component in addition to communication. This

management component primarily monitors the core parame-

ters that are necessary for the decision on adaptations, such as

the latencies to subsequent microservices, knowing the chain’s
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next steps. In this way, the microservice can forward the

results of an AI service directly to the next microservice in

the chain without having to route the data flow via the QoR

Manager. In addition, the QoR Manager receives continuous

updates on the current workload, latencies, and other important

metrics from both the microservices still being processed

and currently processing (7). Based on this information, the

QoR Manager adapts the current microservice chain from ma
t

to mn at runtime if necessary by making changes such as

selecting a different approximation type (8). The management

components of the microservices then receive the information

on the current following services in the form of IP address

and port. Once all steps have been completed, the result is

returned to the originally intended recipient (9).

Cost model for runtime decision: To decide at runtime

whether an adaptation of the microservice chain is necessary,

the QoR Manager must know the expected costs for the

execution of each node v ∈ V and each edge e ∈ E in

the application graph. An edge e represents a communication

interface from one node v to another node v′. The QoR

Manager knows the cost vector C, which represents the

cost Cv of each node and the cost Ce of each edge, i.e.,

C ∈ Cv | ∀v ∈ V ∪ Ce | ∀e ∈ E. To determine the initial

value of the cost vector C, we use historical data obtained

from similar hardware configurations. The approach is based

on measurements of the same task on comparable systems,

where the costs were averaged over a data set. In cases where

historical data is not available, methods from cloud and grid

computing [37], [38] or specific prediction models for deep

learning models [39] could be used. However, our solution is

sufficient to demonstrate the functionality of MARQ.

Dynamic adaptation and monitoring: Static, historical

execution costs alone are insufficient to react to dynamic

runtime conditions. Therefore, each microservice has a mon-

itoring component that monitors the communication to its

subsequent microservice. For example, the transmission cost

Ce, representing the communication of an edge e, is trans-

mitted from node v to the QoR Manager. Currently, we

use a customized solution that measures latencies, resource

availability, and QoR. The pre-execution value applies if the

QoR cannot be determined at runtime. The monitoring method

could be extended using systems such as OpenTelemetry [40]

to support more complex scenarios. MARQ’s decision process

(see Section V) can consider any numerically measurable value

to continuously update the costs in the graph and adjust the

microservice chain in real-time.

Load avoidance and scalability of the QoR Manager: The

QoR Manager processes multiple client requests in parallel

and controls microservice chains at the edge. Our evaluation

(Section VI) shows that our method is significantly faster than

existing solutions, enabling more requests with the same re-

sources. However, overloads can cause bottlenecks. To address

this, we propose two options: First, multiple QoR Managers

can be used, with each resource assigned to only one manager.

Extending this with load balancing methods [41], [42] is

possible but beyond the scope of this work. Second, the filter
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(a) Motivating Example with parallel
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Fig. 3: Generic graph model (following [21]) and privacy

functionality from Section II with audio data processing.

function reduces the QoR Manager’s load by sending up-

dates only when monitored values exceed a defined threshold

(Eq. (1)), where ³ represents acceptable deviations from the

expected value ci, and xi ∈ X is the current measured value.

∃i ∈ {0, ..., |C|}|(xi > (1 + ³i) · ci)

((xi < (1− ³i) · ci)
(1)

IV. THE MODEL

In addition to AI microservice chains such as image pro-

cessing, shown as an example in Section II, many other

use cases represent distributed, mission-critical AI services.

Examples such as sensor fusion, advanced driving functions,

remote control for autonomous driving [43], or predictive

maintenance include more complex AI-based microservice

chains. As already indicated in Section III in the form of costs,

these types of applications have special characteristics that

distinguish them from applications on a single computing unit.

These characteristics include network properties, hardware

diversity, connection types, and resource scarcity. We present

a model designed to satisfy multi-criteria application-specific

requirements such as time constraints, maximum energy con-

sumption, and price constraints. We interpret these require-

ments as constraints that must be met and lead to a dynamic

adaptation of the QoR for each subtask within the application,

with the aim of being able to fulfill the requirements from the

perspective of the overall application.

A. Model for Dynamic QoR Adjustments

The dynamic adaptation of QoR at runtime requires a model

that has knowledge of the different parts of an application

and can establish connections with the underlying system

architecture, e.g., to estimate resource requirements and re-

act appropriately to changes. In this context, we define a

”sequence” as a chain of different microservices, each of

which fulfills a specific purpose, is executed in sequence, and

contributes to an overarching application goal. In addition,

an application can consist of several parallel sequences. An

example of the execution of parallel sequences is a web search

in which the same search string is used to search for results in

different formats (e.g., text, image, and video) on different AI
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services simultaneously and made available to the requester as

one result.

Building upon the modeling approach of Pandey et al. [21],

called MobiDiC, which showed the advantage of using ap-

proximations for single-computer applications, our model ad-

dresses distributed application processing and enables more

precise QoR control in response to external factors. Unlike ex-

isting approaches [21], [22], our model does not limit itself to

a single factor, such as time. Our main challenges are dynamic

adaptation at runtime, addressing multi-criteria requirements,

and enabling parallelism in heterogeneous systems.

We use the structure of a Directed Acyclic Graph (DAG)

to represent the different ways of executing the sequences.

Figure 3a illustrates how the graph structure is built using the

motivating example. The different sub-steps are represented

as nodes, and the arrows symbolize the possible sequences

of the application. We supplement this structure with parallel

tasks as they can occur in real applications. Figure 3b shows

the generic representation of an application as DAG, defined as

G(V,E). As described in Section III, an application comprises

various nodes v ∈ V , each representing a microservice subtask

to be executed. Edges between the nodes are represented as

e ∈ E. To enable different types of connection (e.g., Bluetooth,

cable, or WiFi) from one node v to another node v′, there

can be more than one edge between two nodes. A complete

sequence is a sequence of nodes and edges described as a

path p = (v1, e1, v2, e2, . . . , vn, en, vn+1). Since applications

can consist of parallel sequences, the model must handle this

type of application. In Fig. 3, the parallel parts are labeled

A and B. Modeling the parallel parts allows us to decide at

runtime which sequence is to be taken by the parallel part.

Within a sequence, we assume there are different ways of

varying approximations. In particular, we distinguish between

alternative subtasks (as seen in the image processing example

in Section II), i.e., subtasks that have the same goal but

use different algorithms to achieve this goal, and different

parameters that a subtask can receive as input. The parameters

can be different input data but also configurations, such as in

the example of TensorFlow applications, where the number

of generated tensors can vary[19]. Figure 3 shows these alter-

native subtasks as circles, while squares visualize parameter

variations. Trapezoids, on the other hand, describe application

segments that do not allow alternative approaches. Examples

of this type of subtask are I/O accesses or user queries.

The different edges and nodes with their respective costs

must be clearly identifiable to enable a sequence of tasks in

the graph. A concrete version of a task can be identified by

vas,t. Here, s indicates the stage in the sequence, t is the subtask

to be completed, and a is the approximation available. To

uniquely identify the transmission cost between two nodes, a

particular edge can be identified by eas,t,h, where h is an index

that allows different connection types between the nodes to be

considered.

As described in Section III, the graph G provides diverse

cost factors for determining the optimal path through the

graph. Each node v has a cost vector Cv that represents the

task’s processing costs, and each edge e has a cost vector Ce

for modeling the communication.

B. Offline Generation of Application Graph

The underlying model enables the description of the over-

arching application, based on AI services, with its sequences,

subtasks, approximations, and costs. The generation of the ap-

plication graph with its individual subtasks and approximations

takes place before the first execution. It is based on expert

knowledge and is outside this work’s scope. The QoR of the

respective function can then be calculated using mathematical

methods (see Section II).

Based on the specified graph, MARQ identifies the various

parallel subgraphs, described in Fig. 3 with A and B. MARQ

generates the subgraphs in the offline phase, as their structure

does not change at runtime. By splitting them up, we enable

accelerated processing and individual consideration of the

costs to be complied with for each subgraph. In addition, the

individual consideration of the subgraphs makes it possible to

consider the choice of paths based on the expected costs of

the other subgraphs. Decisions on which paths to choose are

made dynamically in the online phase based on the costs and

constraints of the application.

As already described, we use the index t of the dif-

ferent subtasks to identify the subgraphs. To generate the

subgraphs, we traverse each vertex v within each stage s

and approximation indices a that approximate the subtask t

and the subtasks approximated by possible successor nodes.

This results in several sequential permutations of successive

applications. Subgraphs are then derived from the resulting

permutations of subtask indices by including all corresponding

approximations of the respective subtasks in the subgraph. The

exact determination of the subgraphs is described in Eq. (2).

G′ is a sequential subgraph of G, assuming that G is a graph

with parallel tasks and a set of endpoints Vend.

G′ ¦ G | (∀vas,t, v
a′

s′,t′ ∈ G′ | s = s′ ⇒ t = t′)

'[∀s ∈ S | (∃vas,t, v
a′

s′,t′ ∈ G′ |

(s ̸= s′ ' (vas,t, v
a′

s′,t′) ∈ E) ( vas,t ∈ Vend)]

(2)

Finally, as mentioned above, the costs for the nodes and

edges are determined using the historical data and saved with

the subgraphs.

V. ONLINE MANAGEMENT OF QOR

The QoR management process can be divided into two

distinct phases: the ”offline” phase and the runtime execution,

also called the ”online” phase. As detailed in Section IV-B,

the offline phase involves one-time tasks that would not benefit

from online execution. These tasks encompass activities like

graph generation and the identification of subgraphs within the

graph. In contrast, the online execution phase entails real-time

decision-making based on the system’s current state, aiming

to satisfy user-specified conditions.
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A. Comparing the Alternatives

To fulfill the conditions placed on the execution, we use

two different approaches for the comparison of possible al-

ternatives: the Technique for Order Preference by Similarity

to Ideal Solution (TOPSIS) method [44] and the ε-constraint

method [45]. These methods enable us to evaluate and select

the most suitable solutions based on various criteria.

The TOPSIS method is a multi-criteria decision-making

technique that assigns weights to different criteria to identify

potential solutions. One notable advantage of this approach is

its flexibility in allowing users to express their preferences by

assigning weights to the criteria. However, it is limited because

the solution proposed by TOPSIS may not always align with

the user’s specified conditions. This can occur when the user’s

conditions cannot be fully met due to inadequate weighting

and the available data.

To be able to perform multi-criteria decisions based on

TOPSIS, we first normalize the elements within the cost

vectors C to prepare them for comparison. This normalization

process is carried out as follows:

For each element cij in the cost matrix C we calculate the

normalized value, c′ij , using the equation:

c′ij =
cij

maxj(cij)
(3)

Here, j stands for the criterion under consideration (e.g.,

execution time, QoR, or power consumption), and i for the

alternative to be evaluated. Parallel to the normalization, we

calculate a vector with the maximum values and a vector with

the minimum values of each criterion across all alternatives.

This results in the cost vector for the ideal solution C∗ and

the cost vector for the anti-ideal solution C−.

In the second step, weights can be assigned to each criterion

to reflect their relative importance. This allows users to express

their preferences and prioritize certain criteria over others.

Applying the weights to the normalized costs, we obtain c′′ij ,

which is accomplished using the equation:

c′′ij = wj · c
′
ij (4)

In this case, wj stands for the weight assigned to criterion j,

and c′ij is the normalized value obtained in the previous step.

In the TOPSIS method, two types of distances are calculated

for each alternative: D∗
i and D−

i . These distances measure

how far each alternative is from the ideal solution and the

anti-ideal solution, respectively. D∗
i is the Euclidean distance

that measures how far an alternative is from the best possible

scenario, where the alternative perfectly matches the ideal

solution. It is calculated using the formula:

D∗
i =

√

√

√

√

n
∑

j=1

(c′′ij − (C∗)j ∗ wj)2 (5)

where n is the number of criteria. (C∗)j represents the normal-

ized j-th criterion value of the ideal solution. Conversely, D−
i

measures how close each alternative is to the least desirable

scenario or the worst possible values for each criterion. It

is calculated similarly but using the values of the anti-ideal

solution, C−, as follows:

D−
i =

√

√

√

√

n
∑

j=1

(c′′ij − (C−)j ∗ wj)2 (6)

Finally, the relative closeness (Ri) of each alternative to the

ideal solution is calculated by considering both D∗
i and D−

i :

Ri =
D−

i

D∗
i +D−

i

(7)

This measure helps in ranking the alternatives. A higher Ri

value indicates that the alternative is closer to the ideal solution

and further from the anti-ideal, making it a more desirable

choice.

By calculating both D∗
i and D−

i , the TOPSIS method

provides a comprehensive way to evaluate alternatives not just

by how close they are to the best possible outcome but also by

how far they are from the worst outcome, ensuring a balanced

view in multi-criteria decision-making. This dual consideration

helps in making more robust and reliable decisions in complex

scenarios.

Compared to the TOPSIS method, the ε-constraint method

takes a different approach to simplifying the optimization

problem. When using the ε-constraint method, all criteria

except one are treated as constraints that can be predefined by

the user rather than being subjects of direct optimization. This

process effectively filters the pool of alternatives, isolating a

subset of feasible options. Consequently, optimization efforts

are then concentrated solely on one remaining parameter.

B. Pathfinding and Decision-Making at Runtime

To facilitate the dynamic determination of suitable paths

within a graph, our methodology includes on-demand recal-

culations triggered by fluctuations in the cost metrics or the

current status of the microservice chain’s execution progress.

This process entails confronting two principal challenges: (1)

the computation of current costs associated with diverse paths

and (2) the identification and selection of the most fitting

paths based on these computed costs and specific application

conditions.

The real-time recalculation of costs (1) and paths ensures re-

sponsiveness to emergent changes. As explained in Section III,

such changes may stem from the progress in the computation

of the microservice chain, changes in network conditions, or

availability of resources. Given that cost vectors may encom-

pass diverse cost types, including time and QoR, we deploy an

aggregation function designated as f(Ci, Cj , R). This function

merges the cost vectors Ci and Cj by predetermined rules R,

encompassing basic mathematical operations. The ability to

specify these rules allows our method to combine different

cost types for nodes and edges.

To determine the most suitable path between two vertices

and to be able to select a path (2), we use a Dijkstra imple-

mentation similar to MobiDiC. Due to the changing costs at

runtime, calculating the best paths and choosing the path must
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Algorithm 1: Dijkstra-Pareto-optimal Pathfinding

Input : G(V,E), f , R, vstart
Output : Ppareto

1 Ppareto ← ∅
2 Q← {(vstart, 0)} /* Initialize a priority

queue, with 0 costs */

3 while Q is not empty do
4 (v, Cv)← Q.dequeueWithLowestCost()
5 forall neighbors u of v; with u, v ∈ G do
6 Ctmp ← f(Ce, Cu, R) /* Merge edge cost

Ce with node cost Cu */

7 Cp ← f(Cv, Ctmp, R) /* Cost for

complete path */

8 if !ParetoDominated(Cp, Ppareto) then
9 Q← Q ∪ (u,Cp) /* Enqueue neighbor

with updated cost */

10 Ppareto ← Ppareto ∪ (u,Cp)
11 end
12 end
13 end
14 return Ppareto

15 Function ParetoDominated(C,P):

16 forall (u′, Cu′) ∈ P do
17 if Cu′ dominates C then
18 return true
19 else if C dominates Cu′ then

20 Remove (u′, Cu′) from P /* no longer

considered */

21 end
22 end

be done repeatedly and online. Therefore, we integrate the

calculation of costs into the pathfinding process. Furthermore,

our implementation of the Dijkstra algorithm finds the shortest

path by considering several parameters. To determine which

path to a node is the most favorable, either an implementation

based on the Pareto optimum (ε-constraint method) or the

direct use of the decision maker (TOPSIS) is used.

As an integral part, we enhance the ε-constraint method by

using an algorithm to generate Pareto-optimal paths (Ppareto)

and the associated costs (Cp) at runtime. Algorithm 1 shows

this approach. The paths in Ppareto represent the best trade-

offs between multiple costs (C) and ensure that no other path

can achieve better values in all costs simultaneously [46]. Our

Pareto comparator is central in identifying optimal paths by

evaluating the relations between two cost vectors Ci and Cj

and determining whether Ci is dominated by, dominates, or is

equal to Cj .

To fully execute the ε-constraint method, we proceed in the

following order: First, we generate the Pareto-optimal paths

Ppareto ¦ P . Second, these paths are filtered according to

whether they fulfill user-defined constraints called l ∈ L

(as described in Eq. (8)). In this case, ∆ contains only the

Pareto-optimal paths that fulfill the given constraints. Next, we

search for the paths where the QoR is highest (as in Eq. (9)).

Finally, from the set of paths that are Pareto-optimal, fulfill

the constraints, and have the highest QoR (represented by Ω),

we select the path with the lowest cost (as in Eq. (10)).

Algorithm 2: Pathfinding utilizing TOPSIS in Dijkstra

Input : G(V,E), f , R, vstart
Output : pbest

1 visited, Cideal, Canti ← ∅
/* Initialize a list, with vstart as path

and 0 cost */

2 Q← {(vstart, 0)}
3 while Q not empty do

/* Determine current ideal and

anti-ideal solutions */

4 Cideal, Canti ← Solutions(Q)
5 (v, Cv)← FindHighestProximity(Q,Cideal, Canti)
6 Remove (v, Cv) from Q
7 visited← visited ∪ {(v, Cv)}
8 forall neighbors u of v; with u, v ∈ G do
9 if u ∈ visited then

10 continue

11 end
12 Ctmp ← f(Ce, Cu, R)
13 Cp ← f(Cv, Ctmp, R)
14 (u,Cbest)← Q.get(u) /* NIL, iff u not

in Q */

15 if (u,Cbest) ̸= NIL then
16 Cideal, Canti ← Solutions(Q ∪ (u,Cp))
17 p←

FindHighestProximity({(u,Cp), (u,Cbest)},
Cideal, Canti)

18 if p == (u,Cbest) then
19 continue

20 end
21 Remove (u,Cbest) from Q
22 end
23 Q← Q ∪ {(u,Cp)}
24 end
25 if neighbors of v equals ∅ then
26 pbest ← visited.get(v)
27 end
28 end
29 return pbest

∆ = {p ∈ Ppareto|cp f li} (8)

Ω = {p ∈ ∆|Qp = max(Qq|q ∈ ∆)} (9)

p∗ = argmin(Cp|p ∈ Ω) (10)

Unlike the ε-constraint method, where all possible paths

must be known to decide which path fulfills the application

constraints and is the best with respect to one parameter,

TOPSIS can determine the approximately best path during the

execution of Dijkstra. Our implementation of TOPSIS tends

to rank the approximate Pareto-optimal paths highest, which

streamlines the process by eliminating the need for a separate

treatment of the Pareto-optimal paths and a subsequent TOP-

SIS application. Additionally, our implementation works with

a relative weighting of costs/benefits and a relative ranking of

the known paths. Algorithm 2 shows our approach. It should

be emphasized that our suggested Dijkstra adjustment stores

paths as costs to a node and not just the predecessor node.
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TABLE I: Hardware configuration for tests

Name Description CPUs RAM

Edge server 1 QoR Manager 4 8 GB
Edge server 2 - 4 Microservices 16 64 GB
Edge node Client & JMH 24 32 GB

Since we want to achieve a multi-criteria view of the costs,

more than one path may be applicable. If we come to a node

already known, we have to estimate which path is better.

The weights used in TOPSIS offer the possibility of sig-

nificant influence on the decision-making process and express

the trade-offs between criteria more effectively. However, a

drawback of this approach is that the selected alternatives may

not satisfy the user’s constraints. To overcome this problem,

the calculation can be adapted so that TOPSIS is executed

iteratively with adjusted weights until a valid path is found.

VI. EVALUATION

Mission-critical AI service chains should be able to react

flexibly to changing external factors or (emerging) failure of

a microservice at runtime. This results in various research

questions for our evaluation, which we want to answer to

be able to draw comparisons between MobiDiC, the state-

of-the-art, and the methods provided by MARQ (TOPSIS and

ε-constraint method), which we believe are essential. In the

first step, we want to measure the decision-making process.

To this end, we have divided the performance measurements

into two research questions (RQ):

RQ1 - Single Node: Which method is faster in finding

the best alternative on a stage s with respect to the task t,

assuming that different criteria have to be considered and

different possible alternatives exist?

RQ2 - Pathfinding: Using the Dijkstra algorithms described

in Section V-B to find the best path through the graph, which

method can make the fastest decision considering the different

parallel and sequential parts?

In addition to the pure performance measurements, we also

want to measure the influence on the QoR and deadline in the

case of changing conditions at runtime. Therefore, we want

to consider which method produces the best overall result

under the existing conditions. To answer this, we conduct the

following RQ:

RQ3 - Dynamics: What influence do the different decision

methods have on the final QoR and adherence to the specified

application conditions under changing circumstances due to

fluctuating latencies and execution times?

A. Test Setup

We used four virtual machines (edge servers 1 - 4) on three

separate servers in the same server room and one ThinkStation

(edge node) for our experiments. Detailed hardware spec-

ifications for these servers can be found in Table I. The

microservices relevant to our experiments were executed in

Docker containers on their respective virtual machines and

comprise the components described in Section III. Edge server

1 performs the role of the QoR Manager, as described in

TABLE II: Test graph configuration

Name Microservices Stages Alternatives Subgraphs

small 10 5 2 2
normal 19 6 2 5
big 40 8 7 6
huge 120 14 8 12

Section III, while edge servers 2 to 4 are responsible for

operating the individual microservices. The edge node acts

as a client and is used for performance measurements.
To evaluate the impact of traffic between different microser-

vices, we use Pumba [47], a chaos testing tool that uses the

Linux traffic control tool tc-netem [48] for traffic manipu-

lation. This setup can simulate various network conditions,

including fluctuating latencies. We utilized Java Microbench-

mark Harness (JMH) [49] to measure the time required for the

decision-making process accurately. The configurations used

for each tool can be found in the respective sections.
In our evaluations, we perform measurements on different

graph structures with varying levels of complexity. These

graph structures correspond to distinct microservice chains

and are detailed in Table II. The data in the table shows

how many microservices each graph contains in total, how

many stages the microservice chain is divided into, the max-

imum number of alternatives available per stage, and how

many subgraphs the graph contains. To facilitate the reuse

of these graph structures, but also of MARQ, we have made

these graphs, including graphs with random network and load

manipulations, available as base graphs as well as MARQ on

Zenodo [50]. Our experimental combinations are informed by

Luo et al. [51], who examined microservice call structures in

an Alibaba data center, offering a comprehensive overview.

B. RQ1 - Single Node

Efficient and rapid selection of suitable alternatives at

runtime is crucial, especially if the graph structure offers

many alternatives and several criteria must be considered

simultaneously. To achieve this, we use TOPSIS as described

in Section V. In our experiments, we compare the execution

time of TOPSIS with finding the Pareto-optimal solution since

both the ε-constraint method and MobiDiC are based on

Pareto-optimal solutions. Even though MobiDiC calculates the

Pareto-optimal solution once in the proposed implementation,

we recalculate the solution as soon as the costs change to react

to this change.
To measure the speed of the different methods, we varied

the number of criteria and alternatives taken into account in

two experiments. The first experiment reflects the microservice

structures described in [51] and considers a higher number

of criteria. The second experiment, the long-term experiment,

was designed to show the progression of the execution times

of the individual methods. Both experiments were conducted

with JMH. In all cases, JMH was initialized with three warm-

up runs for each test run to ensure accurate measurements.

Measurements were recorded over a period of 10 seconds for

each iteration.
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Fig. 4: Average time required to compare up to 15 alternatives

(alt.) per stage and up to 40 criteria.
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Fig. 5: Average time required to compare up to 300 alternatives

per stage and up to 10 criteria.

In the first experiment, the execution time of the two

methods was compared with up to 40 criteria and 15 alternative

ones for a task t. Each permutation of the parameters was

repeated 10× over four forks as a test run, i.e., a total of

40× per permutation. In the long-term experiment, we varied

the possible alternatives from 2 to 300 in steps 2, 5, 10,

25, 50, 100, 150, 200, 250, and 300. We also varied the

number of criteria considered simultaneously from 2 to 10.

Each permutation of the parameters was repeated as a test run

100× over four forks, i.e., a total of 400× per permutation,

to obtain reliable and statistically significant results.

The use of TOPSIS leads to a remarkable improvement in

the speed of the decision-making process. Figure 4a shows

the average time needed to find Pareto-optimal solutions for

up to 40 criteria and 15 alternatives. In contrast, Fig. 4b

shows the corresponding results for our proposed TOPSIS-

based approach. It can already be seen here that TOPSIS is

10× faster for the same task. Looking at the results of the

long-term experiment, which can be seen in Fig. 5, it becomes

clear that our proposed solution speeds up the decision-making

process 100-fold. It should be noted that the scales of the

diagrams are different to show the shape of the curve.

C. RQ2 - Pathfinding

Furthermore, our evaluation extends beyond selecting indi-

vidual nodes and encompasses decision-making for the entire

graph, as discussed in Section V. These decisions are made

at runtime, taking into account external factors. To investi-

gate this aspect, we conducted experiments with the graphs

described in Table II. The increased number of alternatives
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Fig. 6: Average time for finding paths.

within these graphs potentially leads to a higher count of

Pareto-optimal paths.

To assess the execution time of pathfinding for each graph,

we utilized JMH. The experiment configuration consisted of

40 iterations, three warm-up runs, and four forks. The costs C

for the respective vertices and edges were randomly generated

per run. Each method was executed once with each cost

configuration.

Figure 6 presents the average time required for pathfinding

on the entire graph, with a logarithmic scale for better visual-

ization. Remarkably, our proposed approach, MARQ, consis-

tently and efficiently identifies the paths to be utilized, even

as the number of alternatives in the overall graph increases.

In contrast, due to the individual Pareto-optimal pathfinding

process, the ε-constraint method experiences slower process-

ing times. As expected, the processing time increases with

the growing number of variants that need to be considered for

pathfinding. This particularly impacts MobiDiC’s decision pro-

cess. Additionally, since the ε-constraint method also requires

computing the Pareto-optimal paths, a significant increase in

processing time is observed with an increasing number of

alternatives in this method.

The significant difference between the ε-constraint method

and the MobiDiC method is worth noting, even though both

methods operate on the Pareto-optimal solution and must

initially compute it. This difference arises from how MobiDiC

handles subgraphs. Specifically, it pertains to the data structure

handling of the graphs. In contrast to MobiDiC, we have

implemented an iterative approach, where we first create the

possible subgraphs and the resulting permutations. However,

MobiDiC treats subgraphs as ”new” graphs, employing a

recursive approach to iterate the entire graph.

D. RQ3 - Dynamics

After demonstrating in Section VI-C that decision-making

with TOPSIS and the ε-constraint method enables rapid

pathfinding, we now analyze the impact of dynamic runtime

adaptation on the average QoR. Load tests are conducted

using the graphs from Table II. As highlighted in the pathfind-

ing evaluation (Section VI-C), MobiDiC takes approximately

12.8 s (see Fig. 6) to find the optimal path for the large

graph. This calculation must be repeated for each dynamic
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TABLE III: Measurements of the effects on the average QoR due to dynamic microservice-chain adaptations.

TOPSIS ε-constraint MobiDiC

G tmax Ø Time Ø QoR Success Failed No path Ø Time Ø QoR Success Failed No path Ø Time Ø QoR Success Failed No path
5 s 4.803 s 100% 100% 0% 0% 4.804 s 100% 100% 0% 0% 4.266 s 87% 100% 0% 0%
5.5 s 4.803 s 100% 100% 0% 0% 4.802 s 100% 100% 0% 0% 4.274 s 87% 100% 0% 0%

S
m

a
ll

6 s 4.802 s 100% 100% 0% 0% 4.808 s 100% 100% 0% 0% 4.301 s 87% 100% 0% 0%
4.5 s 4.301 s 100% 39% 0% 61% 4.308 s 100% 46% 7% 47% 4.471 s 93% 19% 34% 47%
5 s 4.305 s 100% 100% 0% 0% 4.306 s 100% 100% 0% 0% 4.508 s 94% 100% 0% 0%

N
o
rm

a
l

5.5 s 4.307 s 100% 100% 0% 0% 4.305 s 100% 100% 0% 0% 4.506 s 94% 100% 0% 0%
5.5 s 4.852 s 56% 92% 0% 8% 5.187 s 84% 42% 53% 0% 4.892 s 44% 99% 1% 0%
6 s 4.853 s 58% 100% 0% 0% 5.323 s 98% 87% 13% 0% 4.922 s 43% 99% 1% 0%B

ig

6.5 s 4.856 s 54% 100% 0% 0% 5.331 s 100% 100% 0% 0% 4.914 s 43% 98% 2% 0%

change, such as latency shifts. However, the execution of

this graph’s microservice chain finishes in less than 12.8 s,

indicating that execution completes before MobiDiC finalizes

the pathfinding, even without recalculating for new conditions.

Given that MobiDiC’s pathfinding takes longer than the chain

execution, a direct comparison is not feasible. To maintain

clarity and relevance, we excluded the huge graph from RQ3.
Each graph was executed 100× with all methods. We

changed the costs after each execution of the methods. The

executions used the hardware configuration described in Ta-

ble I, and the application simulations were executed in Docker

containers that ran continuously.
To evaluate the robustness of our approach, we introduced

random external influences into our sample application. Each

microservice node was assigned a random percentage error of

up to +/-10% of the initial execution time. The simulation

considers that a node with a higher QoR takes longer to

execute and consumes more energy. To simulate variations in

latencies between nodes, we used Pumba. We started 60%

as many Pumba instances as there were active nodes. Each

Pumba instance randomly selected a node and introduced

a random delay so that it was 100 ms +/- 100 ms. The

distribution of these delays followed a Pareto distribution. For

MobiDiC, we left the time as the optimization target; for the

ε-constraint method, we optimized for the QoR after finding

the Pareto optimal paths, and for TOPSIS, we used the weights

of time - 100%, QoR - 60%, and energy and price 25% for

optimization. We chose these weights to show that the multi-

criteria optimization at runtime improves the QoR, taking into

account the application conditions.
Table III shows measured results for the respective methods

and graphs. We have limited ourselves to the visualization of

the average values (symbolized by a Ø) for time and QoR, as

well as the number of successful executions, cases in which the

calculation did not finish in time due to too high fluctuations,

and the cases in which no valid path could be found.
The results show that TOPSIS always ensured execution

within the constraints when a path for execution was available

within the deadline, increasing the QoR compared to Mo-

biDiC. Due to the selected weights, it can be seen that the

QoR of TOPSIS is average when executing the ”big” graph.

A different choice of weighting will influence this. Due to the

optimization goal of the QoR in the case of the ε-constraint

method, it is possible that the calculation cannot be executed

within the deadline. However, the QoR is at least as good as

TOPSIS and significantly better than MobiDiC.

VII. DISCUSSION

This paper presents MARQ, a framework that supports

decision-making in mission-critical AI microservice environ-

ments through optimized pathfinding and runtime adaptation.

Our findings show that MARQ, utilizing TOPSIS and the ε-

constraint method, efficiently meets demanding performance

targets, even under fluctuating conditions, highlighting its

potential in dynamic edge computing for balancing QoR,

deadlines, and energy use.

A. Interpretation and Implications

MARQ’s success in controlled settings demonstrates its

ability to adapt AI service chains in real-time, balancing mul-

tiple objectives in resource-limited scenarios. This adaptability

is crucial for mission-critical applications like autonomous

driving and edge surveillance, where meeting constraints under

changing conditions is essential. However, while our tests

showed consistent performance, challenges beyond controlled

settings may emerge in real-world applications.

B. Threats to Validity

Internal Validity: Weights assigned to individual parame-

ters significantly impact decision quality—both positively and

negatively, depending on graph complexity and edge condi-

tions (Section V-B). Testing focused on specific parameter

settings and decision algorithms (TOPSIS and ε-constraint

method), implying that other configurations could influence

MARQ’s performance (Section VI-D).

External Validity: Although MARQ performed reliably in

a controlled environment, real-world edge computing envi-

ronments are inherently more complex. Issues such as un-

predictable network fluctuations, packet loss, and resource

contention may limit MARQ’s ability to adapt in real-time.

Testing MARQ under diverse real-world conditions will pro-

vide insights into its broader applicability, especially in large-

scale, multi-node settings.

Construct Validity: The primary metrics for evaluating

MARQ—QoR, execution time, and energy consumption—are

critical but not exhaustive. Other non-functional aspects, such

as reliability under severe network degradation, were not di-

rectly considered. Future evaluations that include these factors

would provide a more comprehensive assessment of MARQ’s

capabilities.

Framework Limitations: The scalability of MARQ using

multiple QoR Managers, as described in Section III, requires
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further investigation and optimization. The current static allo-

cation of resources to QoR Managers could be extended by a

dynamic method. Load balancers [41], [42], in particular, can

help here. In case of resource constraints, there should be a

slight overprovision of resources in production environments

to buffer unexpected events.

C. Future Directions

Future work should extend the MARQ tests to operating

environments with different network and resource constraints.

Adding redundancies [52], warm standby systems [53], and

fallback mechanisms can improve reliability under extreme

conditions where MARQ currently reaches its system limits,

such as abrupt or excessive network degradation. Using mul-

tiple QoR Managers and decentralized control could improve

scalability in multi-node environments.

Automating graph generation, currently expert-driven, is

another key direction. Reducing bias and enhancing scalability

could be achieved through Software Product Lines [54]–[56],

Feature Models [57]–[59], and call graph analysis [60], [61].

D. Applicability of MARQ

We focused on object detection due to its broad appli-

cability in domains like multi-task autonomous perception

(e.g., identifying agents, their actions, and locations [62]),

healthcare (e.g., anomaly detection in medical imaging [63]),

and robot-based search-and-rescue operations [64]. Beyond

object detection, MARQ applies to any AI service encapsu-

lated in microservices, enabling dynamic runtime adaptations.

Examples include tasks in audio processing (e.g., speech-to-

text [65]).

VIII. RELATED WORK

Approximation techniques. The use of approximations to

achieve improved execution speeds or energy savings has been

the subject of research efforts [12], [24], [66]. These concepts

and approximation techniques have been explored at various

levels of computing approximations [66]. Optimizing applica-

tion execution times is crucial, especially when dealing with

vast amounts of data. Approximation techniques are employed

to obtain faster results that may not be fully precise but are

deemed acceptable for the application’s requirements [27],

[28], [67], [68]. Similarly, in the context of AI/ML applications

at the edge, the execution time must be managed within

defined limits [19], [65]. Task offloading is another use case

in which much research took place. In such scenarios, the

adaptation of QoR becomes relevant [21], [22], [25].

Modeling of Quality of Result. The model proposed by

Pandey et al. [21] inspires the current work. Pandey et al.

utilize approximations to optimize application execution time.

We extend this approach to consider distributed applications,

focusing on time optimization and other aspects. As our ap-

proach supports microservice chains, various external factors

can impact the execution time. Therefore, we dynamically

react to adaptations, aiming to achieve the application’s ob-

jectives while adhering to given constraints. QLRan [25] is a

work that focuses on selecting the best node for executing a

particular application. However, this approach may encounter

limitations when dealing with microservice chains, where

an application may span across multiple nodes. In contrast,

our approach, MARQ, does not solely concentrate on node

selection but aims to dynamically determine the optimal paths

through the microservice chain, considering various factors.

MobiQoR [22] introduces QoR as a novel optimization di-

mension for the decision-making process of task offloading.

It addresses whether a task should be offloaded to a remote

server or executed locally based on energy consumption and

system efficiency considerations. MobiQoR proves beneficial

for making decisions regarding task offloading, especially

when energy efficiency or similar system-level factors are

crucial. Caches (local storage) are employed in MobiQoR to

enhance the results further.

Dynamic adaptation to changing conditions becomes essen-

tial in scenarios where tasks can benefit from not only being

executed on a local device. MARQ offers a viable solution

to such problems by providing a framework for dynamic

adaptation of QoR based on various factors and constraints.

To the best of our knowledge, the targeted adaptation of

QoR based on multiple factors for mission-critical microser-

vice AI microservice chains is a novel contribution. Existing

solutions often optimize for a single parameter, such as time,

while neglecting other factors like result quality, resource

utilization, or latency. In distributed systems, however, re-

source utilization, especially CPU utilization, has a significant

influence on execution time in addition to latency [51].

IX. CONCLUSION

We introduce MARQ, a framework developed in response

to the need for dynamic adaptation of AI service chains at

the edge. This need arises from the challenges of executing

mission-critical AI services that require balancing performance

metrics such as QoR, execution time, and energy consumption.

MARQ encapsulates these services into microservices and em-

ploys real-time multi-criteria decision-making. It utilizes two

decision-making approaches: the ϵ-constraint method, which

optimizes one criterion while achieving Pareto optimality, and

TOPSIS, which identifies the most suitable execution path by

considering multiple criteria simultaneously.

Our model extends the approaches by incorporating the

ability to dynamically respond to external influences such

as latency and parallel processing. This enhancement enables

MARQ to perform pathfinding up to 100× faster than current

methods, achieving a significant improvement in QoR by over

10%, effectively meeting the stringent demands of mission-

critical applications at the edge.
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